DOUBLE BETA DECAY EXPERIMENTS

A.S. BARABASH ITEP, Moscow

Plan

Historical introduction

Present status

• Future experiments

I. Historical introduction

Neutrino was introduced by W. Pauli in 1930

β-decay theory (weak interaction) was formulated by E. Fermi in 1933:

 $\begin{array}{l} (\mathsf{A},\mathsf{Z}) \rightarrow (\mathsf{A},\mathsf{Z}{+}1) + \mathrm{e}^{\scriptscriptstyle -} + \mathrm{v}^{\sim} \\ (\mathsf{A},\mathsf{Z}) \rightarrow (\mathsf{A},\mathsf{Z}{-}1) + \mathrm{e}^{\scriptscriptstyle +} + \mathrm{v} \end{array}$

The birth of double beta decay

 2β(2ν) decay was introduced by
 M. Goeppert-Mayer in 1935:

$$(A,Z) \rightarrow (A,Z+2) + 2e^{-}+2V$$

(T_{1/2} ~ 10²¹-10²² y)

From S. Schoenert

Dirac

Majorana =>1937

Racah's chains (G. Racah, 1937)

- $(A,Z) \rightarrow (A,Z+1) + e^{-} + \tilde{v} (v=v^{-}) \rightarrow v + (A,Z) \rightarrow (A,Z+1) + e^{-}$
- So, it will be possible to see difference between Dirac and Majorana neutrinos!
- W.H. Farry (1938) → no any practical possibilities to use this (there were no reactors at that time!)

The birth of neutrinoless double beta decay

 2β(0ν) decay was introduced by W.H. Farry in 1939:

$$(A,Z) \to (A,Z+2) + 2e^{-}$$
 (4)

(T_{1/2} ~ 10¹⁵-10¹⁶ y) [Parity violation was not known at that time!]

O_V- $\beta\beta$ **Decay** (A,Z) \rightarrow (A,Z+2) + 2e⁻

From S. Schoenert

Double beta decay scheme

First experiments

- 1948 first counter experiment (Geiger counters, ¹²⁴Sn; T_{1/2}(0v) > 3·10¹⁵ y)
- 1950 first evidence for 2β2ν decay of ¹³⁰Te in first geochemical experiment:

T_{1/2} ≈ 1.4·10²¹ y!!!

- 1950-1965 a few tens experiments with sensitivity ~ 10¹⁶-10¹⁹ y
- 1966-1975 in 3 experiments sensitivity to 0v decay reached ~ 10²¹ y!!!

Geochemical experiments

- Selection of mineral, contains 2β nuclei (¹³⁰Te, ⁸²Se, for example).
- Age and geological history of the mineral (age is ~ (0.1-4)x10⁹ yr) have to be known.
- 3. Extraction of daughter atoms (Xe, Kr, for example).
- 4. Determination of isotopic composition (using **mass-spectrometer**).
- 5. Excess of ¹³⁰Xe or ⁸²Kr, for example, gives information about 2β-decay rate.

Measurement time is a few billion years!

1957 – situation is changed!

- **P** and **C** violation
- V-A structure of weak interaction
- Helicity of v(v~) is ~ 100%

 $2\beta(0\nu)$ -decay is suppressed (if even possible?) and $T_{1/2}(0\nu) > T_{1/2}(2\nu)$

Best results in 1966-1975

- T_{1/2}(0v;⁷⁶Ge) > 5·10²¹ y; Ge(Li) detector, 1973 (E. Fiorini et al.)
- T_{1/2}(0v;⁴⁸Ca) > 2·10²¹ y; streamer chamber + magnetic field + plastic scint., 1970 (C. Wu et al.)
- T_{1/2}(0v;⁸²Se) > 3.1·10²¹ y; streamer chamber + magnetic field + plastic scint., 1975 (C. Wu et al.)

Fig. 3. Cutaway drawing of double beta decay apparatus.

Geochemical experiments with ¹³⁰Te, ¹²⁸Te, ⁸²Se $(2v \text{ measurements}: ~ 10^{21}, ~ 10^{24} \text{ and } ~ 10^{20} \text{ y})$

Main achievements in 1976-1987

- 2β2ν decay was first time detected in direct (counting) experiment ⇒
 T(⁸²Se)_{1/2} = 1.1^{+0.8}-0.3^{-10²⁰} y
 - (35 events; TPC, **1987**, S. Elliott, A. Hahn, **M. Moe**)

First time enriched Ge

detector was used in experiment (ITEP-ErFI; 1987)

Main achievements in 1988-2001

- $T_{1/2}(0v;^{76}Ge) > (1.6-1.9) \cdot 10^{25} y;$
 - (HM and IGEX; enriched HPGe detectors)
- T_{1/2}(0v) > 10²²-10²³ y for ¹³⁶Xe, ⁸²Se, ¹¹⁶Cd, ¹⁰⁰Mo
- 2v-decay was detected for many nuclei (TPC, ELEGANT-V, NEMO-2, HM, IGEX, Solotvino, Liq. Ar....) + transition to the 0⁺ excited states (Soudan, Modane, TUNL-ITEP)

II. PRESENT STATUS

- Introduction
- 2. Current experiments
 - NEMO-3 and CUORICINO
 - "small-scale" experiments
 - ECEC(0v) resonance

transitions

1. Introduction

Candidates with $Q_{2\beta} > 2 \text{ MeV}$

Nuclei	Q _{2β} , keV	Abundance, %	
1. ⁴⁸ Ca	4272	0.187	
2. ¹⁵⁰ Nd	3371.4	5.6	
3. ⁹⁶ Zr	3350	2.8	
4. ¹⁰⁰ Mo	3034.4	9.63	
5. ⁸² Se	2996	8.73	
6. ¹¹⁶ Cd	2805	7.49	
7. ¹³⁰ Te	2527.5	<u>34.08</u>	
8. ¹³⁶ Xe	2458.7	8.87	
9. ¹²⁴ Sn	2287	5.79	
10. ⁷⁶ Ge	2039.0	7.61	
11. ¹¹⁰ Pd	2000	11.72	

Natural γ -rays background - E < 2.615 MeV. So, there are **6 gold** and **5 silver** isotopes

2 β^+ , **EC** β^+ and **ECEC** processes

2 β^+ : (A,Z) \rightarrow (A,Z-2) + 2 β^+ + 2X (+ 2 ν) (6 nuclei candidates) EC β^+ : $e^-_b + (A,Z) \rightarrow (A,Z-2) + \beta^+ + X (+ 2<math>\nu$) (16 nuclei candidates) ECEC: $2e^-_b + (A,Z) \rightarrow (A,Z-2) + 2X (+2<math>\nu$) (34 nuclei candidates)

Candidates for $2\beta^+$ transition

Nuclei	∆M, keV	Abundance, %
1. ¹²⁴ Xe	2865	0.09
2. ⁷⁸ Kr	2806	0.35
3. ¹⁰⁶ Cd	2771	1.25
4. ⁹⁶ Ru	2719	5.54
5. ¹³⁰ Ba	2611	0.101
6. ¹³⁶ Ce	2400	0.185

NEUTRINOLESS DOUBLE BETA DECAY

2 electrons $E_{\beta 1} + E_{\beta 2} = Q_{\beta \beta}$

Oscillation experiments \Rightarrow **Neutrino is massive!!!**

- However, the oscillatory experiments cannot solve the problem of the origin of neutrino mass (Dirac or Majorana?) and cannot provide information about the absolute value of mass (because the ∆m² is measured).
- This information can be obtained in 2β-decay experiments.

$$\langle \mathbf{m}_{v} \rangle = |\Sigma| |\text{Uej}|^2 e^{i\phi_j} \mathbf{m}_j|$$

Thus searches for double beta decay are sensitive not only to masses but also to mixing elements and phases ϕ_i .

What one can extract from 2 β -decay experiments? \Rightarrow

- Nature of neutrino mass (Dirac or Majorana?).
- Absolute mass scale (value or limit on m₁).
- Type of hierarchy (normal, inverted, quasidegenerated).
- **CP** violation in the lepton sector.

Neutrinoless double beta decay is being actively searched, because it is closely related to many fundamental concepts of nuclear and particle physics:

- the lepton number nonconservation;
- the existence of neutrino mass and its origin (Dirac or Majorana?);
 - the presence of right-handed currents in electroweak interactions;
 - the existence of Majoron;
 - the structure of Higg's sector;
 - the supersymmetry;
 - the heavy sterile neutrino;
 - the existence of leptoquarks.

Input for <m_{ee}> from v-oscillations

DBD and neutrino mass hierarchy

Best present limits on <m,>

Nuclei	Т _{1/2} , у	<m<sub>v>, eV QRPA</m<sub>	<m<sub>∨>, eV [SM]</m<sub>	Experiment
⁷⁶ Ge	>1.9·10 ²⁵	< 0.22-0.41	< 0.69	НМ
	≈1.2·10 ²⁵ (?)	≈ 0.28-0.52(?)	≈ 0.87(?)	Part of HM'04
	≈2.2·10 ²⁵ (?)	≈ 0.21-0.38(?)	≈ 0.64(?)	Part of HM'06
	>1.6·10 ²⁵	<0.24-0.44	<0.75	IGEX
¹³⁰ Te	>2.8·10 ²⁴	< 0.35-0.59	< 0.77	CUORICINO
¹⁰⁰ Mo	>1.1·10 ²⁴	< 0.45-0.93	-	NEMO
¹³⁶ Xe	>4.5·10 ²³	< 1.41-2.67	< 2.2	DAMA
⁸² Se	> 3.6 ·10 ²³	< 0.89-1.61	< 2.3	NEMO
¹¹⁶ Cd	>1.7·10 ²³	< 1.45-2.76	< 1.8	SOLOTVINO

A Recent Claim

Klapdor-Kleingrothaus H V, Krivosheina I V, Dietz A and Chkvorets O, *Phys. Lett.* B **586** 198 (2004).

Used five ⁷⁶Ge crystals, with a total of 10.96 kg of mass, and 71 kg-years of data $\tau_{1/2} = 1.2 \times 10^{25} \text{ y}$ (4.2 σ) 0.24 < m_v < 0.58 eV (± 3 sigma) (NME from Eur. Lett. 13(1990)31)

There are some problems with this result:

- 1) Only one measurement.
- 2) Only ~4 σ level (independent analysis gives even ~ 2-2.7 σ).
- 3) In contradiction with HM'01 and IGEX.
- 4) Moscow part of Collaboration: **NO EVIDENCE**.
- 5) ²¹⁴Bi peaks are overestimated.
- 6) "Total" and "analyzed" spectra are not the same.

"2β community": very conservative reaction

In any case new experiments are needed, which will confirm (or reject) this result

Mod.Phys.Lett. A21(2006)1547

Old data, new pulse shape anal. $\tau_{1/2} = 2.23^{+0.44}_{-0.31} \times 10^{25} \text{ y}$ (6 σ) $m_v = 0.32 \pm 0.03 \text{ eV}$ $n = 11\pm 1.8 \text{ events} \Rightarrow$ where is a statistical error?! non-correct peak position?!

Heidelberg-Moscow experiment

1990-2003

(full statistics: 71.7 kg·y)

Two neutrino double beta decay

- Second order of weak interaction
- Direct measurement of NME values!
 ⇒
 - The only possibility to check the quality of NME calculations!!!
 - g_{pp} (QRPA parameter \Rightarrow NME(0v)!)
- This is why it is very important to measure this type of decay for many nuclei, for different processes (2β⁻, 2β⁺, Kβ⁺, 2K, excited states) and with high accuracy.

 $2\beta(2\nu)$ decay was first time discussed by M. Goeppert-Mayer in 1935

Two neutrino double beta decay

 By present time 2β(2ν) decay was detected in 10 nuclei: ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹⁵⁰Nd, ²³⁸U

For ¹⁰⁰Mo and ¹⁵⁰Nd 2β(2ν) transition to 0⁺ excited states was detected too
 ECEC(2ν) in ¹³⁰Ba was detected in geochemical experiment

Main goal is: precise investigation of this decay

$2\beta(2\nu)$ spectrum for ¹⁰⁰Mo (NEMO-3)

~ 700000 2v events

Background is ~ 2%!!

All parameters of decay are measured!!!

[A.S.B. Phys. Rev. C 81 (2010) 035501]

- ⁷⁶Ge − (1.5 ± 0.1)·10²¹ y $^{130}\text{Te} - (6.8^{+1.2}_{-1.1}) \cdot 10^{20} \text{ y}$ Isolar 150Nd - (8.2± 0.9)⋅10¹⁸ y ⁸²Se − (0.92± 0.07)·10²⁰ y 96 Zr - (2.3 ± 0.2)·10¹⁹ y ¹⁵⁰Nd – ¹⁵⁰Sm (0+₁) – (1.33^{+0.45}-0.26) 10²⁰ y 100 Mo – (7.1 ± 0.4)·10¹⁸ y 238 U(rad) - (2.0 ± 0.6)·10²¹ y $^{100}Mo - ^{100}Ru(0_{1}^{+}) -$ (5.9^{+0.8}-0.6)·10²⁰ y ECEC(2v): ¹¹⁶Cd − (2.8± 0.2)·10¹⁹ y ¹³⁰Ba(geo) - (2.2 ± 0.5)·10²¹ y
- ⁴⁸Ca (4.4 ^{+0.6}_{-0.5})⋅10¹⁹ y
- $^{128}\text{Te}(geo) (1.9 \pm 0.4) \cdot 10^{24} \text{ y}$

Recommended values for half-lives:

2. CURRENT EXPERIMENTS

• **NEMO-3** and **CUORICINO**

• Others (TGV, Baksan, DAMA, COBRA, ITEP-TPC, TUNL-ITEP, excited states,...)

CUORICINO

INFN - Laboratori Nazionali del Gran Sasso - L'Aquila – Italy

3200 m.w.e overburden - cosmic rays are no more a bkg problem

★ n flux is reduced to ~10⁻⁶ n/cm²/s ★ μ flux is ~ 2/m²/h

Cuoricino

11 modules 4 detectors each Dimension: 5x5x5 cm³ Mass: 790 g

Total mass 40.7 kg (~11 kg of ¹³⁰Te)

2 modules 9 detectors each, Dimension: 3x3x6 cm³ Mass: 330 g

Low Temperature Detectors (LTD)

Thermal Detectors Properties good energy resolution wide choice of absorber materials true calorimeters slow $\tau = C/G \sim 1 \div 10^3$ ms

T = 8 mK

Cuoricino result on ¹³⁰Te ββ0v decay

 $b = 0.18 \pm 0.01 \text{ c/keV/kg/y}$

Maximum Likelihood flat background + fit of 2505 peak

Anticoincidence background spectrum the bb-On region

 $\left\langle m_V^{} \right\rangle \leq 0.3 - 0.7 \ eV \quad (90\% \ CL)$ $\tau_{1/2}^{0\nu} \ge 2.8 \cdot 10^{24} \, y \, (90\% \, CL)$ [Experiment is stopped in July 2008]

NEMO-3 Collaboration (Neutrino Ettore Majorana Observatory) 60 physicists, 17 labs

NSTITUT NATIONAL DE PHYSIQUE NUCLÉAIRE ET DE PHYSIQUE DES PARTICULES

Laboratoire Souterrain de Modane

Built for Taup experiment (proton decay) in 1981-1982

The NEMO3 detector

Fréjus Underground Laboratory : 4800 m.w.e.

<u>Source</u>: 10 kg of $\beta\beta$ isotopes cylindrical, S = 20 m², 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>: 1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (18 cm) Neutron shield: borated water (~30 cm) + Wood (Top/Bottom/Gapes between water tanks)

 $\implies Able to identify e^-, e^+, \gamma and \alpha$

Finished detector

Radon purification facility

Running since Oct. 4th, 2004 in FréjusUnderground Lab. 1 ton charcoal @ -50°C, 7 bars Flux: 150 m³/h Activity of ²²²Rn : Before Facility = 15 Bq/m³ After Facility < 15 mBq/m³

$\beta\beta$ decay isotopes in NEMO-3 detector

Sector interior view

Sources preparation

ββ events selection in NEMO-3

Typical ββ2ν event observed from ¹⁰⁰Mo

¹⁰⁰Mo $2\beta 2\nu$ result

7.37 kg.y

(Data Feb. 2003 - Dec. 2004)

 $T_{1/2} = 7.11 \pm 0.02 \text{ (stat)} \pm 0.54 \text{ (syst)} \times 10^{18} \text{ y}$

Phys. Rev. Lett. 95 (2005) 182302

¹⁰⁰Mo (7kg), 2νββ

 $T_{1/2}(2v) = [7.17 \pm 0.01(stat) \pm 0.54(sys)] \times 10^{18} yr \Rightarrow ~3.5 yr,$ Phase II (low Rn), S/B = 76

 $M^{2v}(^{100}Mo) = 0.126 \pm 0.006$

to be compared with earlier published in PRL 95 (182302) 2005:

 $T_{1/2}(2v) = [7.11 \pm 0.02(stat) \pm 0.54(sys)] \times 10^{18} \text{ yr} \Rightarrow ~1 \text{ yr}, \text{ Phase I, S/B} = 40$

NEMO-3 to run until Nov'10. Special runs to improve systematics.

2vββ results for other isotopes

Summary of $2\nu\beta\beta$ results with NEMO-3

Isotope	S/B	(2νββ), γ		
¹⁰⁰ Mo	40	(7.11 ± 0.02(stat)±0.54(syst))·10 ¹⁸ (SSD favoured) *		
¹⁰⁰ Mo(0 ⁺ ₁)	3	(5.7 ^{+1.3} -0.9(stat))±0.8(syst))·10 ²⁰ **	[NPA 781 (2006) 209]	
⁸² Se	4	(9.6± 0.3(stat)±1.0(syst))·10 ¹⁹ *		
¹¹⁶ Cd	7.5	(2.88± 0.04(stat)±0.16(syst))·10 ¹⁹ ***		
¹³⁰ Te	0.35	(7.0 ^{+1.0} _{-0.8} (stat) ^{+1.1} _{-0.9} (syst))·10 ²⁰ ***		
¹⁵⁰ Nd	2.8	(9.11 ^{+0.25} -0.22(stat)±0.63(syst))·10 ¹⁸ ***	[PRC 80 (2009) 032501R]	
⁹⁶ Zr	1.0	(2.35± 0.14(stat)±0.16(syst))·10 ¹⁹ ***	[0906.2694]	
⁴⁸ Ca	6.8	(4.4 ^{+0.5} -0.4(stat)±0.4(syst))·10 ¹⁹ ***		

* Phase 1 data, Phys. Rev. Lett. 95 (2005) 182302. Additional statistics are being analysed, to be published soon.

** Phase 1 data.

*** Phases 1 and 2, preliminary.

The $\beta\beta2\nu$ half-life of ¹³⁰Te has been a long-standing mystery:

 Geochemical experiments: (26 ± 2.8) x 10²⁰ years (Kirsten 83) (27 ± 1) x 10²⁰ years (Bernatowicz 93)

(7.9 ± 1) x 10²⁰ years (Takaoka 96) ~8 x 10²⁰ years (Manuel 91)

- Is the difference between 'old' and 'young' ores due to time dependence of constants..? [A.S.B. JETP Lett. 68 (1998) 1]
- Using geochemical ratio of ⁸²Se/¹³⁰Te and present half-life value for ⁸²Se from direct experiments:
 (9 ± 1) x 10²⁰ years (recommended value, A.S.B. 2001)

$T_{1/2} = [7.0 \pm 0.9(stat) \pm 1.0(syst)] \cdot 10^{20}$ (NEMO-3)

<u>0vββ</u> for ¹⁰⁰Mo(~7kg) and ⁸²Se (~1kg)

Summary of $0v\beta\beta$ results with NEMO-3

- No evidence for non conservation of the leptonic number
- Current limits on Ονββ (at 90% C.L.):

Isotope	Exposure (kg·y)	Τ _{1/2} (Ονββ), γ	$\langle m_v \rangle$, eV [NME ref.]
¹⁰⁰ Mo	26.6	> 1 · 10 ²⁴	< 0.47 - 0.96 [1-3]
⁸² Se	3.6	> 3.6 · 10 ²³	< 0.9 - 1.6 [1-3]; < 2.3 [7]
¹⁵⁰ Nd	0.095	> 1.8 · 10 ²²	< 1.7 - 2.4 [4,5] ;< 4.8 - 7.6 [6]
¹³⁰ Te	1.4	> 9.8 · 10 ²²	< 1.6 - 3.1 [2,3]
⁹⁶ Zr	0.031	> 9.2 · 10 ²¹	< 7.2 - 19.5 [2,3]
⁴⁸ Ca	0.017	> 1.3 · 10 ²²	< 29.6 [7]

- NME reterences:
 - [1] M.Kortelainen and J.Suhonen, Phys.Rev. C 75 (2007) 051303(R)
 - [2] M.Kortelainen and J.Suhonen, Phys.Rev. C 76 (2007) 024315
 - [3] F.Simkovic, et al. Phys.Rev. C 77 (2008) 045503
 - [4] V.A. Rodin et al. Nucl. Phys. A 793 (2007) 213
 - [5] V.A. Rodin et al. Nucl.Phys. A 766(2006) 107
 - [6] J.H.Hirsh et al. Nucl.Phys. A 582(1995) 124
 - [7] E.Caurrier et al. Phys.Rev.Lett 100 (2008) 052503

Majorons and V+A currents

 $(A, Z) \rightarrow (A, Z+2) + 2e^{-} + \chi^{0}(\chi^{0})$

best limits

	V+A *	n=1 **	n=2 **	n=3 **	n=7 **	
Мо	>3.2·10²³ λ<1.8·10 ⁻⁶	> 2.7·10²² g _{ee} <(0.4- 0.9)·10 ⁻⁴	>1.7·10 ²²	>1.0·10 ²²	>7·10 ¹⁹	
Se	>1.2·10²³ λ<2.8·10 ⁻⁶	> 1.5·10²² g _{ee} <(0.6- 1.9)·10 ⁻⁴	>6·10 ²¹	>3.1·10 ²¹	>5·10 ²⁰	

n: spectral index, limits on half-life in years

* PI+PII data

^{*} PI data, *R.Arnold et al. Nucl. Phys. A765 (2006) 483*

New results for ⁹⁶Zr and ¹⁵⁰Nd

	n = 1	n = 2	n = 3	n = 7
⁹⁶ Zr [1]	1.9·10 ²¹ <g<sub>ee> < (1.5-5.7)·10⁻⁴</g<sub>	9.9·10 ²⁰	5.8·10 ²⁰	1.1·10 ²⁰
¹⁵⁰ Nd [2]	1.5∙10 ²¹ <g<sub>ee> < (1.7-3)•10⁻⁴</g<sub>	5.4·10 ²⁰	2.2·10 ²⁰	4.7·10 ¹⁹

[1] Nucl-ex/0906.2694.[2] Phys. Rev. C 80 (2009) 032501R.

Other interesting results with NEMO-3 (using information obtained with 2v-decay of ¹⁰⁰Mo)

- SSD mechanism is confirmed for 2v decay of ¹⁰⁰Mo [Phys.At.Nucl. 69(2006) 2090]
- "Bosonic" properties of neutrino is checked¹⁾:
 - pure "bosonic" neutrinos are excluded;
 - conservative upper limit sin² χ <0.6 is obtained

[Nucl. Phys. B 782 (2007) 90]

¹⁾ A. Dolgov and A. Smirnov, PL B621 (2005) 1

Single electron spectrum $2\nu\beta\beta$ (¹⁰⁰Mo)

Search for "bosonic" neutrino using $\pmb{2}\beta$ decay data

 In 2005 Dolgov and Smirnov assumed that the PEP is violated for neutrinos and, consequently, neutrinos obey the Bose-Einstein statistics [PL B 621 (2005) 1]

Consequencis of this assumption:

- a) neutrino may form cosmological Bose condensate (dark matter!)
- b) "wrong" statistic of neutrino could modify Big Bang nucleosynthesis
- c) spectra of the supernova neutrino may be changed
- d) **PEP** violation for neutrino can be tested in the two neutrino **double beta decay** experiments

Why it can be possible for neutrino?

- PEP never was checked for neutrino
- Neutrino is a neutral particle
- Neutrino can be a Majorana particle ($v \equiv v'$)
- Neutrino has a very small mass

If neutrino is bosonic (or partially bosonic) particle one can see the effect in $2\beta(2\nu)$ decay:

- Probability of decay will be changed
- Sum and single electron energy spectra will be changed
- Angular distribution will be changed

So, $2\beta(2\nu)$ decay is nice process to check possible PEP violation in neutrino sector

The normalized distribution of the total energy of two electrons $^{100}Mo(0^{+}_{g.s.}) \rightarrow ^{100}Ru(0^{+}_{g.s.})$ [A.S. Barabash, A.D. Dolgov, R. Dvornicky, F. Simkovic and A.Yu. Smirnov, Nucl.Phys. B 782 (2007) 90.]

Large admixture of **bosonic** v is excluded: $sin^2\chi < 0.6$

Prospects for the future with NEMO-3

- Data taking with **NEMO-3** up to November **2010**
- 0v:
 - ~ (1.5-2)·10²⁴ y for ¹⁰⁰Mo (<m_v> ~ 0.3-0.7 \ni B);
 - ~ 6-7·10²³ y for ⁸²Se (< m_v > ~ 0.6-1.2 \ni B)
 - ~ 10²²-10²³ y for ${}^{48}Ca$, ${}^{96}Zr$, ${}^{116}Cd$, ${}^{130}Te$ and ${}^{150}Nd$

• 2v:

Precise measurements with 7 nuclei $(T_{1/2}, 2e^-, e^-, angular spectra)$; **Excited state transitions**

• Majoron:

- $\sim 5{\cdot}10^{22}\,{\rm y}$ for $^{100}{\rm Mo}\;({<}g_{ee}{>}\sim(3{\text{-}}6){\cdot}10^{\text{-}5}\,)$
- ~ 10²¹-10²² y for ⁴⁸Ca, ⁸²Se, ⁹⁶Zr, ¹¹⁶Cd, ¹³⁰Te and ¹⁵⁰Nd
- SSD
- "Bosonic" neutrino

Most active "small" experiments

- **TGV-II** (multi HPGe; ¹⁰⁶Cd; Modan))
- TUNL-ITEP (2xHPGe; exsited states in ¹⁰⁰Mo, ¹⁵⁰Nd; USA)
- **Baksan** (proportional counter; ¹³⁶Xe, ⁷⁸Kr)
- DAMA-KIEV (scintillators; ¹³⁶Ce, ⁶⁴Zn, ¹⁸⁰W...; Gran Sasso)
- ITEP-Bordeaux (HPGe; excited states: ¹⁰⁰Mo, ⁸²Se, ¹⁵⁰Nd, ⁷⁴Se, ¹¹²Cd,...; Modan)
- **COBRA** (CdZnTe semiconductor; Gran Sasso)

$2\beta^+$, β^+ EC and ECEC processes:

• 0v-transitions:

 $(A,Z) \to (A,Z-2) + 2e^{+}$ $e_{b} + (A,Z) \to (A,Z-2) + e^{+} + X$ $2e_{b} + (A,Z) \to (A,Z-2) + \gamma(2\gamma,e^{+}e^{-},e^{-},...) + 2X$ • **2v-transitions:** $(A,Z) \to (A,Z-2) + 2e^{+} + 2\nu$ $e_{b} + (A,Z) \to (A,Z-2) + e^{+} + 2\nu + X$

 $2e_b + (A,Z) \rightarrow (A,Z-2) + 2\nu + 2X$

Decay scheme of ¹⁰⁶Cd

Q value

• $2\beta^+$: $Q' = \Delta M - 4m_e - 2\epsilon_b (Q'_{max} \approx 0.8 \text{ MeV})$ (6 nuclei) • β^+EC : $Q' = \Delta M - 2m_e - \epsilon_b (Q'_{max} \approx 1.8 \text{ MeV})$ (22 nuclei) • ECEC: $Q' = \Delta M - 2\epsilon_b (Q'_{max} \approx 2.8 \text{ MeV})$ (34 nuclei)

```
[Q(2\beta) \approx 3 \text{ MeV}]
```

Theoretical half-life estimations

Transition to the ground state. For the best candidates ($\langle m_v \rangle = 1 \text{ eV}$): Transition to the ground state. For the best candidates (2v):

 $\begin{array}{ll} \beta^{+}\beta^{+}\left(0\nu\right) & \sim 10^{27}\text{-}10^{28} \text{ y} \\ \beta^{+}\text{EC}(0\nu) & \sim 10^{26}\text{-}10^{27} \text{ y} \\ \text{ECEC}(0\nu) & \sim 10^{28}\text{-}10^{31} \text{ y} \end{array}$

 $\begin{array}{ll} \beta^+\beta^+\,(2\nu) & \sim 10^{27}\text{-}10^{28}\,y\\ \beta^+\text{EC}(2\nu) & \sim 10^{22}\text{-}10^{23}\,y\\ \text{ECEC}(2\nu) & \sim 10^{20}\text{-}10^{22}\,y \end{array}$

(One can compare these values with

~ 10^{24} - 10^{25} y for 2β ⁻-decay)

Present experimental sensitivity is ~ 10²¹ y

A.P. Meshik et al., Phys. Rev. C 64 (2001) 035205

$^{130}Ba \rightarrow ^{130}Xe$ (ECEC)

- Mineral barite (BaSo₄) with age ~ 1.7.10⁸ yr was investigated
- Gas-retention age of the barite was found as (1.34±0.12)·10⁸ yr (using K-Ar and U-Xe methods)
- Xe was extracted from the sample and excess of ¹³⁰Xe was found
- $T_{1/2} = (2.2 \pm 0.5) \cdot 10^{21} \text{ yr} (2v)$

- Detectors: 32 HPGe Ø 60 mm x 6 mm Sensitive volume 20.4 cm² x 6 mm
- Total sensitive volume ~ 400 cm³
- Total mass ~3 kg
- **Details** of cryostat ~2500 g (Al, Cu, ...)
- Al ~ 1200 g (including holders ~ 360 g) Cu ~ 1300 g

TGV-2

PASSIVE SHIELDING

Phase II results (13.6 g of ¹⁰⁶Cd and t = 12900 h)

- ECEC (2v) $T_{1/2} > 4.2 \cdot 10^{20}$ y (90% CL)
- $EC\beta^+(2\nu)$ $T_{1/2} > 1.1 \cdot 10^{20} \text{ y}$
- $2\beta^+(2\nu)$ $T_{1/2} > 1.4 \cdot 10^{20} \text{ y}$

Plan for the future: ~ 10²¹ y

ECEC(0v); resonance conditions

• In **1955** (**R.Winter, Phys. Rev. 100** (**1955**) **142**) it was mentioned that if there is **excited** level with "right" energy then decay rate can be very high.

(Q'-E* has to be close to zero. Q'-energy of decay to g.s., E*energy of excited state)

- In 1982 the same idea for transition to excited and ground states was discussed (M. Voloshin, G. Mizelmacher, R. Eramzhan, JETP Lett. 35 (1982)).
- In 1983 (J. Bernabeu, A. De Rujula, C. Jarlskog, Nucl. Phys. B 223 (1983) 15) this idea was discussed for ¹¹²Sn (transition to 0⁺ excited state). It was shown that enhancement factor can be on the level ~ 10⁶!

J. Bernabeu, A. De Rujula, C. Jarlskog, Nucl. Phys. B 223 (1983) 15

$^{112}Sn \rightarrow ^{112}Cd [0^{+}(1871)]$

$$\Delta M = 1919.5 \pm 4.8 \text{ keV} \text{ (old value)}$$
$$Q'(KK;0^+) = \Delta M - E^*(0^+) - 2E_K = (-4.9 \pm 4.8) \text{ keV}$$

 $T_{1/2}(0v) \approx 3 \cdot 10^{24} \text{ y (for } < m_v > = 1 \text{ eV})$ (if Q' ~ 10 eV) [ECEC(2v) transition is strongly suppressed!!!]

Nice signature: in addition to **two X-rays** we have here **two gammarays** with strictly fixed energy (617.4 and 1253.6 keV)

J. Bernabeu, A. De Rujula, C. Jarlskog, Nucl. Phys. B 223 (1983) 15

¹¹²Sn→¹¹²Cd(0⁺;1870 keV)

The ECEC(0v) mode is shown as a function of the degeneracy parameter Q-E

Resonance conditions

 In 2004 the same conclusion was done by Z. Sujkowski and S. Wycech (Phys. Rev. C 70 (2004) 052501).

Resonance condition (using single $EC(v,\gamma)$ argument):

E_{brems} = Q'_{res} = | E(1S,Z-2)-E(2P,Z-2)|

(i.e. when the photon energy becomes comparable to the **2P-1S** level difference in the final atom)

Q'-Q'res < 1 keV

Z. Sujkowski and S. Wycech

Decay-scheme of ¹¹²Sn

 2_{3}^{+}

 0_{2}^{+}

 2^+_2

 0_{1}^{+}

 2_{1}^{+}

 0^{+}

Here ∧M = 1919.82±0.16 keV (PRL 103 (2009) 042501)

 $Q' = \Delta M - 2E_b = 1866.42 \text{ keV}$

Isotope-candidates (transition to the excited state)

Nuclei	A, %	ΔM , keV	E*, keV	Δ, keV	E _K *)	E _{L2} *)
⁷⁴ Se	0.89	1209.7±2.3 1209.240±0.007 (new!)	1204.2 (2+)	2.5±0.1 (LL)	11.1	1.23
⁷⁸ Kr	0.35	2846.4±2.0	2838.9 (2+?)	4.5±2.1 (LL)	12.6	1.47
⁹⁶ Ru	5.52	2718.5±8.2	2700.2 (2 ⁺) 2712.68 (?)	-4.5±8.2 (KL) 0±8.2 (LL)	20	2.86
¹⁰⁶ Cd	1.25	2770±7.2	2741.0 (4 ⁺) 2748.2 (2,3 ⁻)	1.1±7.2 (KL) -5.6±7.2 (KL)	24.3	3.33
¹¹² Sn	0.97	1919.5±4.8 1919.82±0.16 (new!)	1871.137 (0 +) 1870.74(4+)	-4.7±0.23 (KK) -4.3±0.21 (KK)	26.7	3.73
¹³⁰ Ba	0.11	2617.1±2.0	2608.42 (?) 2544.43 (?)	-1.2±2.0 (LL) 3.7±2 (KK)	34.5	5.10
¹³⁶ Ce	0.20	2418.9±13	2399.87 (1+,2+?) 2392.1 (1+,2+?) - 2390.79(3 ⁻)	7.5±13 (LL) ??? -16±13 (KL) -14.6±13 (KL)	37.4	5.62
¹⁶² Er	0.14	1843.8±5.6	1745.7(1 ⁺) 1782.68(2 ⁺)	-9.5±5.6 (KK) -1±5.6 (KL)	53.8	8.58

 $^{*)}E_{K}$ and E_{L2} are given for daughter nuclei

2⁺: suppression factor is ~ 10⁴

```
g.s.-g.s. transitions
```

```
<sup>152</sup>Gd (0.2%), <sup>164</sup>Er (1.56%),
<sup>180</sup>W(0.13%)
```

(There are only X-rays in this case)

¹⁵²Gd-¹⁵²Sm $\Delta M = 54.6 \pm 3.5 \text{ keV}$ K – 46.8 keV L₁ = 7.73; L₂ = 7.31; L₃ = 6.71 keV

 $\Delta = 0 \pm 3.5 \text{ keV}$ (KL case)

¹⁶⁴Er-¹⁶⁴Dy ∆M = 23.3±5.5 keV K - 53.78 keV L₁ = 9.05; L₂ = 8.58; L₃ = 7.79 keV

 $\Delta = 5.7 \pm 3.9 \text{ keV}$ (LL case)

KK -?

¹⁸⁰W-¹⁸⁰Hf $\Delta M = 144.4 \pm 6.1 \text{ keV}$ $\Delta = 13.7 \pm 4.5 \text{ keV}$ K - 65.34 keV L₁ = 11.27; L₂ = 10.74; L₃ = 9.56 keV

```
<sup>180</sup>W-<sup>180</sup>Hf(2+;93.32 keV)
\Lambda M = 51.08 \pm 6.1 \text{ keV}
```

Table. Best present limits on ECEC(0v) to the excited state (for isotope-candidates with possible resonance conditions)

Nuclear (natural abundance)	$E^*(J^{\pi}_{f})$	Т _{1/2} , у	Experiment, year
⁷⁴ Se (0.89%)	1204.20 (2+)	> 5.5·10 ¹⁸	Modane (ITEP-Bordeaux), 2007
⁷⁸ Kr (0.35%)	2838.49 (2+)	> 1.2·10 ^{21 *)}	Baksan (INR), 2010
⁹⁶ Ru (5.54%)	2700.21 (2 ⁺) 2712.68 (?)	> 4.9·10 ¹⁸ > 1.3·10 ¹⁹	Gran Sasso (DAMA-Kiev), 2009
¹⁰⁶ Cd (1.25%)	2741.0 (4 ⁺) 2748.2 (2,3 ⁻)	> 1.7.10 ²⁰	TGV-II, 2010
¹¹² Sn (0.97%)	1871.13 (0+) 1870.74 (4+)	> 1.3·10 ²¹ > 1.1·10 ²¹	Modane (ITEP-Bordeaux), 2010
¹³⁰ Ba (0.106%)	2608.4 (?) 2544.43 (?)	> 1.5·10 ^{21 *)}	Geochemical, 2001
¹³⁶ Ce (0.185%)	2399.87 (1,2 ⁺) 2392.1 (1,2 ⁺)	> 4.1·10 ¹⁵ > 2.4·10 ¹⁵	Gran Sasso (DAMA-Kiev), 2009
¹⁶² Er (0.14%)	1745.7 (1+)	-	-

*) Estimation from existing experimental data

Problems

- There is no good theoretical description of the ECEC processes and "resonance" conditions
- Accuracy of ΔM (and Q as a result) is not very good (~ 2-10 keV) and has to be improved
- Quantum numbers are not known in some cases

[It is possible to improve the accuracy of ΔM to ~ 10-100 eV: ¹¹²Sn: $\Delta M = 1919.82\pm0.16$ keV, PRL 103 (2009) 042501; ⁷⁴Se: $\Delta M = 1209.240\pm0.007$ keV, PRC 81 (2010) 032501R $\Delta M = 1209.169\pm0.049$ keV, PLB 684 (2010) 17]

III. FUTURE EXPERIMENTS

- Main goal is:
 - To reach a sensitivity ~ 0.01-0.1 eV to <m_v> (inverted hierarchy region)
- Strategy is:
 - to investigate different isotopes (>2-3);
 - to use different experimental technique

Here I have selected a few propositions which I believe will be realized in the nearest future (~3-10 years)

- CUORE (¹³⁰Te, cryogenic thermal detector)
- GERDA (⁷⁶Ge, HPGe detector)
- MAJORANA (⁷⁶Ge, HPGe detector)
- **EXO** (¹³⁶**Xe**, TPC + Ba⁺)
- SuperNEMO (⁸²Se or ¹⁵⁰Nd, tracking detector)
- **KamLAND-Xe** (¹³⁶**Xe**, liquid scintillator)
- **SNO+** (¹⁵⁰Nd, liquid scintillator)

Other proposals: CANDLES, COBRA, XMASS, MOON, DCBA, NEXT, LUCIFER, ...

SUMMARY TABLE

Experime nt	Isotope	Mass, kg	Т _{1/2} , у	<m<sub>v>, meV</m<sub>	Status
CUORE	¹³⁰ Te	200	2.1·10 ²⁶	40-90	Funded
GERDA	⁷⁶ Ge	I. 17 II. 40 III.1000	3·10 ²⁵ 2·10 ²⁶ 6·10 ²⁷	70-200 10-40	Funded Funded R&D
MAJORANA	⁷⁶ Ge	I. 30-60 II. 1000	(1-2)·10 ²⁶ 6·10 ²⁷	70-200 10-40	Funded R&D
EXO	¹³⁶ Xe	200 1000	6.4·10 ²⁵ 8·10 ²⁶	100-200 30-60	Funded R&D
SuperNEMO	⁸² Se	100-200	(1-2)·10 ²⁶	40-100	R&D
KamLAND- Xe	¹³⁶ Xe	400 1000	~ 4·10 ²⁶ ~ 10 ²⁷	40-80 25-50	Funded R&D
SNO+	¹⁵⁰ Nd	56 500	~ 4.5·10 ²⁴ ~ 3·10 ²⁵	100-300 40-120	Funded R&D

CUORE

 Cryogenic Underground Observatory for Rare Events
 Closely packed array of 988 TeO₂ crystals 5×5×5 cm³ (750 g) 741 kg TeO₂ granular calorimeter 600 kg Te = 203 kg ¹³⁰Te
 Single high granularity detector

CUORE schedule

2008-2009: Hut construction Crystals production Utilities

2010=2011: Clean room External Shielding Cryogenics CUORE-0

2012: Internal Shielding Detector assembly Faraday Cage Front-end & DAQ

2013:

Data taking

CUORE-0

CUORE-0 = first CUORE tower to be installed in the CUORICINO dilution refrigerator (hall A @ LNGS)

Motivations

High statistics test of the many improvements/changes developped for the CUORE assembly procedure:

- gluing
- holder
- zero-contact approach
- Wires
- ...

CUORE demonstrator: expected background in the DBD and alpha energy regions reduced by a factor 3 with respect ro CUORICINO 0.07 counts/keV/kg/y

Powerful experiment: it will overtake soon CUORICINO sensitivity

CUORE 5 y sensitivity

"Realistic":

B = 0.01 /keV·kg·y; $\Delta E = 5$ keV T_{1/2} > 2.1·10²⁶ y, <m> < 0.04-0.09 eV

"Optimistic": B = 0.001 /keV⋅kg⋅y; ∆E = 5 keV T_{1/2} > 6.5⋅10²⁶ y, <m> < 0.02-0.05 eV

Scintillating bolometers

CdWO₄: 508g

ZnSe:337 g

- Already tested different scintillating crystals (CdWO₄, CaF₂, CaMoO₄, SrMoO₄, PbMoO₄, ZnSe, ...).
- With some of them we have obtained excellent results (for example CdWO₄, CaMoO₄ and ZnSe).

GERDA

Germany, Italy, Belgium, Russia

- Goal: analise HM evidence in a short time using existing ⁷⁶Ge enriched detectors (HM, Igex) Concept: naked Ge crystals in LAr
 - 1.5 m (LAr) + 10 cm Pb + 2 m water
 - 2-3 orders of magnitude better bkg than present Status-of-the-Art
 - active shielding with LAr scintillation

3 phases experiment

Phase I: operate refurbished HM & IGEX enriched detectors (~18 kg)

- Undergriound commissioning
- Background: 0.01 counts/ keV kg y
- Scrutinize ⁷⁶Ge claim with the same nuclide (5s exclusion/confirmation)
- Half life sensitivity: 3 x 10²⁵ y
- Start data taking: 2011

Phase II: additional ~20 kg ⁷⁶Ge diodes (segmented detectors)

- Background: 0.001 counts / keV kg y
- Sensitivity after 100 kg y (~3 years): 2 x 10²⁶ y ((m_v < 70 200 meV))

Phase III: depending on physics results of Phase I/I

~ 1 ton experiment in world wide collaboration with MAJORANA < m, > < 10 - 40 meV</p>

GERDA: Technical realization

GERDA Water Tank and Muon Veto

- Active shield
- Filled with ultra-pure water from Borexino plant
- 66 PMTs: Cherenkov detector
- Plastic scintillator on top of cleanroom

Phase I:

18 kg germanium
20 kg·y exposure
10⁻² counts/(kg·keV·y)

Phase II:

35 kg germanium 100 kg·y exposure 10⁻³ counts/(kg·keV·y)

Phase III:

1000 kg germanium

 $\leq 10^{-4}$ counts/(kg·keV·y)

A. Caldwell, KK, Phys. Rev. D **74** (2006) 092003

Operation of the 3 natGe detectors

Calibration by ²³²Th source

⁴²Ar background problem

A.S. Barabash et al., NIM A 416 (1998) 179 ⁴²Ar/⁴⁰Ar < 6.10⁻²¹ (90% CL)

More then 10 times higher activity in GERDA???

No contradiction. GERDA measure not ⁴²Ar, but local activity of ⁴²K. ⁴²K is created as ions and concentrated around Ge detectors, wires and so on because of electric field.

Possible GERDA time-schedule

- 1. Test with natural Ge crystals 2010.
- 2. Phase I (18 kg of enriched HPGe) 2011.
- 3. Phase II (40 kg) 2012-2014.
- 4. Phase III (1000 kg) 2015-2025 (common experiment with MAJORANA?)

MAJORANA Project

The Majorana Shield - Conceptual Design

- Deep underground: >5000'
- Allows modular deployment, early operation
- Contains up to eight 57-crystal modules
- 40 cm bulk Pb, 10 cm ultra-low background shield

Top view

The MAJORANA DEMONSTRATOR Module

⁷⁶Ge offers an excellent combination of capabilities & sensitivities.

(Excellent energy resolution, intrinsically clean detectors, commercial technologies, best $0\nu\beta\beta$ sensitivity to date)

60-kg of Ge detectors

- 30-kg of 86% enriched ⁷⁶Ge crystals required for science goal.
- -60-kg required for sensitivity to background goal.
- Examine detector technology options
 p- and n-type, segmentation, point-contact.

Low-background Cryostats & Shield

- ultra-clean, electroformed Cu
- Initial module will have 3 cryostats
- naturally scalable
- Compact low-background passive Cu and Pb shield with active muon veto

• Located underground 4850' level at SUSEL/DUSEL.

MAJORANA DEMONSTRATOR Module Sensitivity

• Expected Sensitivity to $0\nu\beta\beta$ (30 kg enriched material, running 3 years, or 0.09 t-y of ⁷⁶Ge exposure) $T_{1/2} \ge 10^{26}$ y (90% CL).Sensitivity to $<m_v> < 140$ meV (90% CL) [Rod05,err.]

1-tonne Ge - Projected Sensitivity vs. Background

Him

 $T_{\frac{1}{2}^{0v}} = \ln(2) N \varepsilon t / UL(B)$

MAJORANA DEMONSTRATOR SCHEDULE

Personale de la sur Hannes a mara della conserva ca terminate e la seconda de la secon

GERDA - Majorana

• 'Bare' enrGe array in liquid argon

- Shield: high-purity liquid Argon / H_2O
- Phase I (~2011): ~18 kg (HdM/IGEX diodes)
- Phase II (~2012): add ~20 kg new detectors Total ~40 kg

- Modules of ^{enr}Ge housed in high-purity electroformed copper cryostat
- Shield: electroformed copper / lead
- Initial phase: R&D prototype module
 Total 60 kg

Joint Cooperative Agreement:

- Open exchange of knowledge & technologies (e.g. MaGe, R&D)
- Intention to merge for 1 ton exp. Select best techniques developed and tested in GERDA and Majorana
EXO (Enriched Xenon Observatory) USA-RUSSIA-CANADA

• ${}^{136}Xe \rightarrow {}^{136}Ba^{++} + 2e^{-} (E_{2\beta} = 2.47 \text{ MeV})$

 Main idea is: to detect all products of the reaction with good enough energy and space resolution (M.Moe PRC 44(1991)931)

Tracking

- concept: scale Gotthard experiment adding Ba tagging to suppress background (¹³⁶Xe陷 ¹³⁶Ba^{义义}+2e)
- single $\text{Ba}^{\underline{\times}}$ detected by optical spectroscopy
- two options with 63% enriched Xe
 - ☆High pressure Xe TPC
 - LXe TPC + scintillation
- calorimetry + tracking

LXe TPC

Present R&D

- · Ba⁺ spectroscopy in HP Xe / Ba⁺ ext
- · energy resolution in LXe (ion.+scint.
- · Prototype scale:
- ► 200 kg enriched L¹³⁶Xe without tage
- ▶ all EXO functionality except Ba id
- operate in WIPP for ~two years
 Protorype goals:
- Test all technical aspects of EXO (except Ba id)
- ► Measure 2v mode
- ►Set decent limit for 0v mode (probe Heidelberg- Moscow)

Full scale experiment at WIPP or SNOLAB

EXO

650 nm

metastable

47s

493 nm

1 ton EXO

- Liquid (gas) Xe TPC + Ba⁺ tagging
- 1 ton of ¹³⁶Xe (80% enrichment)
- ΔE/E(FWHM) = 3.8% at 2.5 MeV (ionization and scintillation readout)
- Background (5 y) = 1 event
- Sensitivity (5 y): 8·10²⁶ y (<m_v> ~ 0.03-0.06 eV)

EXO-200 (without Ba⁺ tagging)

- 200 kg of ¹³⁶Xe (80% enrichment) exist!
- Location: WIPP (USA)
- ΔE/E(FWHM) = 3.8% at 2.5 MeV (ionization and scintillation readout)
- Background (5 y) = 40 events
- Sensitivity (5 y): 6.4·10²⁵ y (<m_v> ~ 0.1-0.2 eV)
- Start of measurements: in ~ 2010-2011

EXO-200

Intermediate Prototype without Barium Tagging

- TPC Vessel fully machined at Stanford under 7 m.w.e shielding; E-beam welding used for all but final weld to minimize introduction of radioactive background
- 200 kg enr. Xe (80% in 136Xe)
- Vessel complete, welded to door
 Half detectors almost complete
 - (APDs, cables under assembly)
 - Detector at WIPP: lead shielding, Xe plumbing almost complete, cryogenics tests in progress

Schedule:

- engineering run Summer 09
- physics run Fall 09
- First 2nu measurement 2010
- Onu 3–5 vears

SuperNEMO Collaboration

~ 90 physicists, 12 countries, 27 laboratories

Possible location : LSM

MODANE UNDERGROUND LABORATORY 60'000 m³ EXTENSION

Very preliminary design

~20 sub-modules for 100+ kg of isotope surrounded by shielding

Single sub-module with ~7 kg of isotope

From NEMO-3 to SuperNEMO

NEMO-3

SuperNEMO

	¹⁰⁰ Mo	Choice of isotope	⁸² Se or ¹⁵⁰ Nd		
	7 kg	Isotope mass M	100-200 kg		
	8% @3MeV	Energy resolution FWHM (calorimeter)	4% @ 3MeV		
18 %		Efficiency ε (ββ0ν)	~ 30 %		
2	²⁰⁸ Tl < 20 μBq/kg ¹⁴ Bi < 300 μBq/kg	Internal radiopurity ²⁰⁸ Tl and ²¹⁴ Bi in the ββfoils	208Tl < 2 µBq/kg ($45^{82}Se: ^{214}Bi < 10$ µBq/kg)		
T _{1/2} () <m<sub>v:</m<sub>	β β0ν) > 2. 10 ²⁴ y > < 0.3 – 1.3 eV	SENSITIVITY	$\begin{array}{l} T_{1/2}(\beta\beta0\nu) > (1-2) \cdot 10^{26} \ y \\ < m_{\nu} > \sim 40\text{-}140 \ meV \end{array}$		
	Main R&D tas	1) ββ source produ2) Energy resolution	ction3) Radiopurityon4) Tracking		

SuperNEMO Demonstrator (1st module)

MAIN GOALS :

■ To demonstrate the feasibility of large scale detector with requiered performance (efficiency, energy resolution, radiopurity, ...)

- To measure the radon background
- To finalize detector design

To produce competitive physics measurement
 T_{1/2}(ββ0v) > 6.5 x 10²⁴ years
 <m_v > < 210 – 570 meV
 with 7 kg of ⁸²Se after ~ 2 years of demonstrator data taking

SuperNEMO schedule highlights

- NEMO-3 decommissioning early 2011
- Demonstrator construction 2010-2012
- Demonstrator physics run start-up 2013
- Full detector construction start-up 2014
- Target sensitivity (~0.05 eV) 2019

KK claim to be verified with Demonstrator by 2015

KamLAND-Zen project

Background study using KamLAND MC (GEANT4)

Major BG

- (1). ¹³⁶Xe 2vββ
- (2). spallation isotopes : ${}^{10}C$, ${}^{11}Be => 1/10$ using new electronics help
- (3). ⁸B solar neutrinos <4.9 events/d/kton on KamLAND
- (4). from Mini Balloon (MIB) material : ²⁰⁸TI, ²¹⁴Bi => vertex cut,

Assumed

- 400kg 90% enriched Xe loaded LS
- MIB contamination (238U, 232Th, 40K) = (10-12, 10-12, 10-11)[g/g]
- neutrino effective mass <mv>
 - = 150meV (the lower limit of the current claimed detection)
- $T_{1/2}(2v\beta\beta) > 10^{22}y$

-
$$T_{1/2}(0v\beta\beta) > 1.14x10^{24}y$$

- ¹⁰C 90% tag, ²¹⁴Bi 66% tag

Summary of BG and signal in signal region

2	136 Xe 2 ν	²⁰⁸ TI	²¹⁴ Bi	¹⁰ C	¹¹ Be	⁸ B	Total	¹³⁶ Xe 0v
	2.08 ±0.15	1.86×10 ⁻² ±0.13×10 ⁻²	2.40 ±0.01	3.09 ±0.01	0.26 ±0.01	1.52 ±0.03	9.35 ±0.23	18.08 ±0.02

[events/year]

summary

- **KamLAND** is running for reactor, Geo, 7Be solar (to 2011)
- **KamLAND** have ability to do $0v\beta\beta$ experiment
- KamLAND-Zen project will start using 400kg 90% enriched Xe from May 2011
- Target sensitivity on **400kg** Phase ~60meV @2years
- Planning Xe1000 phase (from 2013 or 2015: depend on funding)

SNO: One million pieces transported down in the 9 ft x 12 ft x 9 ft mine cage and re-assembled under ultra-clean conditions. Every worker takes a shower and wears clean, lint-free clothing.

Over 70,000 Showers to date and counting

SNO+

SNO+: SNO filled with liquid scintillator

A liquid scintillator detector has poor energy resolution

Huge quantities of isotope (high statistics) and low backgrounds however help compensate

- source in-source out capability
- large, homogeneous liquid detector leads to well-defined background model
- possibly source in-source out capability
- using the technique that was developed originally for LENS and now also used for Gd-loaded scintillator
- SNO+ collaboration managed to load Nd into pseudocumene and in linear alkylbenzene (>1% concentration)
- with 1% Nd loading (natural Nd) a very good neutrinoless double beta decay sensitivity is predicted, but...

Nd loaded sintillator:

1% loading (Natural Nd) large light absorption by Nd 47 ± 6 pe/MeV (Monte Carlo)

0.1% loading (Isotopically enriched to 56% Nd) acceptable 400 ± 21 pe/MeV (Monte Carlo)

SNO+ (2)

- Using existing SNO infrastructure
- Well understood detector

1057 events per year with 500 kg ¹⁵⁰Nd-loaded liquid scintillator in SNO+.

Simulation assuming light output and background similar to Kamland.

Sensitivity Limits (3 yrs): • Natural Nd (56 kg isotope): $m_{\nu} \sim 0.1-0.3 \text{ eV}$ • 500 kg enriched ¹⁵⁰Nd $m_{\nu} \sim 0.04-0.12 \text{ eV}$

Funded by NSERC for final design/engineering and initial construction 2008-2010 End of 2010 → ready for scintillator filling

IV. Conclusion

- 1. Significant advance has been made in the investigation of 2v-decay.
- 2. Present conservative limit on $\langle m_v \rangle$ from $2\beta(0v)$ -decay experiments is $\sim 0.75 \text{ eV}$.
- 3. There is indication on "evidence" of $2\beta(0\nu)$ -decay in ⁷⁶Ge ($<m_{\nu}> \approx 0.3-0.5 \text{ eV}$). But it has to be confirmed (or rejected) in new experiments with ⁷⁶Ge (it will be done in a few years).

4. NEMO-3 will be stopped in November 2010 and will reach a sensitivity to $\langle m_v \rangle$ on the level $\sim (0.3-0.7)$ eV.

5. In 2011:

- start data taking with GERDA-I (⁷⁶Ge);
- start data taking with EXO-200 (¹³⁶Xe);
- start data taking with KamLAND-Xe (¹³⁶Xe);
- start data tacking with CUORE-0 (¹³⁰Te).

6. New generation of experiments will reach sensitivity to $\langle m_v \rangle$ on the level $\sim (0.01-0.1) \text{ eV}$ in $\sim 2013-2020$.