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Bruno M. Pontecorvo was born in 1913 in Pisa (Italy) in a wealthy
family. His father was owner of a textile factory, mother was from
family of a doctor. There were eight children in the family: five
brothers and three sisters. All were talented. Three became
famous: biologist Guido, film director Gillo, physicist Bruno.

Afer the school Bruno entered the Engineer Faculty of the Pisa
University

After 2 years of the Engineer Faculty he decided to switch to
physics

His oldest brother Guido recommended him to go to Rome, where
E.Fermi and his group worked

Bruno passed an exam (Fermi, Rasetti), and was accepted to the
Rome University. He became Fermi student (1932)

B.P. plaid an important role in the discovery of the effect of slow
neutrons (1934) All practical applications of neutrons are based on

this effect)
In 1936-40 Bruno worked in Paris in Jollot Curie group (nuclear

isomerism)
In 1940-42 USA. B.P. invented and applied a new method of the

searching for oil (neutron well logging)



In 1943-49 Canada. Scientific leader of the first research reactor in
Canada, first experiments on the study of µ-decay, first experiment
on the measurement of neutrino mass, first method of neutrino

detection (Cl-Ar radiochemical method), idea of µ− e universality
of the weak interactions,...

In 1950-93 Dubna, JINR. First experiments on Dubna
synchrocyclotron, first proposal of accelerator neutrino experiments

(the experiment was done at BNL and allowed to establish
existence of the muon neutrino (νµ)), first idea of neutrino

oscillations, development of this idea,...
B. M. Pontecorvo was great neutrino physicist, one of the creators

of modern neutrino physics. He was extremely charming,
intelligent and gifted person. Physics for him was the most

important. But he also liked very much tennis, literature, music,
underwater fishing, ...



Observation of neutrino oscillations in solar, atmospheric, reactor
and accelerator neutrino experiments is one of the most important
recent discovery in particle physics. It is a common opinion that
with the discovery of neutrino oscillation a new, beyond the SM

physics was unveiled
The observation of neutrino oscillations means that

I Neutrinos have small but different from zero masses.
I Fields of neutrinos with definite masses enter into CC current

in the mixed form

All existing weak interaction data can be described by the standard
CC and NC Hamiltonians

The Standard CC lepton interaction

LCC
I (x) = − g

2
√
2
jCCα (x)W α(x) + h.c.

jCCα (x) = 2
∑

l=e,µ,τ

ν̄lL(x) γα lL(x)



From neutrino oscillation experiments follow that νlL(x) is ”mixed
field”

νlL(x) =
3∑

i=1

Uli νiL(x)

νi (x) is the field of neutrino with mass mi

U is 3× 3 unitary Pontecorvo-MNS mixing matrix
The most important consequences of the neutrino mixing are

neutrino oscillations - periodical transitions between different flavor
neutrinos (νl � νl ′) in neutrino beams

The standard probability of the transition νl → νl ′ in vacuum has
the form

P(νl → νl ′) = |
3∑

i=1

Ul ′i e
−i

∆m2
2i L

2E U∗
li |2

∆m2
ik = m2

k −m2
i , L is the source-detector distance, E is the

neutrino energy



In the expression for P(νl → νl ′) the relative phase
∆m2

2iL
2E comes

from propagation of neutrinos with definite masses, factors U∗
li and

Uli comes from states of initial and final flavor neutrinos
Coherent sum over the states of neutrinos with definite masses is

performed.
If we take into account the unitarity of the PMNS matrix we can

present the transition probability in another form

P(νl → νl ′) = |δl ′l +
∑
i=1,3

Ul ′i (e
−i

∆m2
2i L

2E − 1)U∗
li |2



The unitary PMNS mixing matrix is characterized by three mixing
angles and one CP phase. It can be obtained by three Euler

rotations

U =

 1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13

 c12 s12 0
−s12 c12 0
0 0 1

 .

Transition probability depends on six parameters: ∆m2
12 and

∆m2
23, three mixing angles θ12, θ23, θ13 and CP-phase δ

From experimental data follow that two parameters are small
∆m2

12

∆m2
23

≃ 1
30

sin2 θ13 . 5 · 10−2

In the leading approximation a rather simple picture of neutrino
oscillations is emerged



Let us consider neutrino oscillations under the assumptions that
sin2 θ13 = 0 and ∆m2

12 ≪ ∆m2
23

In the atmospheric region of L
E (

∆m2
23L

2E & 1) we have

P(νµ → ντ ) ≃ |Uτ3 (e
−i

∆m2
23L

2E −1)U∗
µ3|2 =

1

2
sin2 2θ23 (1−cos∆m2

23

L

2E
)

P(νµ → νe) ≃ 0

For the νµ → νµ survival probability we find

P(νµ → νµ) = 1−
∑
l ′=τ,e

P(νµ → νl ′) ≃ 1−1

2
sin2 2θ23 (1−cos∆m2

23

L

2E
)

In the reactor KamLAND region (
∆m2

12L
2E & 1 ) we have

∆m2
23L

2E ≫ 1. The contribution of the ”large” ∆m2
23 disappears due

to averaging over neutrino spectrum etc.
For the νe → νe survival probability we have

P(ν̄e → ν̄e) = 1− 1

2
sin2 2θ12 (1− cos∆m2

12
L

2E
)



The probability of the solar neutrinos to survive is given by the
two-neutrino νe survival probability in matter which depends on

∆m2
12, sin

2 θ12 and electron number density
In analysis of neutrino oscillations data this first approximation

dominates : four parameters (∆m2
12, ∆m2

23, sin
2 θ23, sin

2 θ12) can
be determined from the data. For other parameters only upper

bounds can be inferred
From analysis of the Super-K atmospheric neutrino data

∆m2
23 = 2.19+0.14

−0.13 eV2, sin2 2θ23 > 0.96

sin2 θ13 < 7 · 10−2 (normal spectrum)

sin2 θ13 < 1.3 · 10−1 (inverted spectrum)

The Super-K evidence for neutrino oscillations was confirmed by
the accelerator long-baseline K2K and MINOS experiments

From two-neutrino analysis of the MINOS data

∆m2
23 = (2.43± 0.13) · 10−3 eV2, sin2 2θ23 > 0.90



From global analysis of the solar and reactor KamLAND data

∆m2
12 = (7.59+0.21

−0.21) · 10
−5 eV2, sin2 θ12 = 0.31+0.02

−0.02

sin2 θ13 < 6 · 10−2

From the reactor CHOOZ data

sin2 θ13 < 4 · 10−2

Notice that for the absolute value of neutrino mass from Mainz
and Troitsk tritium data the following bound was obtained

mβ ≤ 2.2 eV
These experiments are much less sensitive to neutrino mass than
oscillation experiments. This is connected with the interference

nature of neutrino oscillations



Neutrino masses and neutrino mixing are due to NEUTRINO
MASS TERM of the Lagrangian

Generation of mass terms is the most difficult part of the modern
theory

We believe that mass terms of quarks and leptons are due to
spontaneous violation of the EW symmetry. Origin of the neutrino

mass term is unknown at present
We will consider all possible neutrino mass terms

Neutrino mass term is a sum of Lorenz-invariant products of the
left-handed and right-handed components of neutrino fields
νlL(x) (l = e, µ, τ), components of SU(2) doublets, enter into

interaction (”active components”)
νlR(x) are SU(2) singlets; do not enter into interaction (”sterile

components”)
In the neutrino mass term active and sterile components could

enter



Special case. DIRAC mass term

LD(x) = −ν̄L(x)MD νR(x) + h.c.

νL =

 νeL
νµL
ντL

 , νR =

 νeR
νµR
ντR


MD is a 3× 3 complex matrix

After the standard diagonalization ( M = U†mV , U and V are
unitary matrices, mik = miδik

LD(x) =
3∑

i=1

mi ν̄i (x) νi (x)

νi (x) is the field of neutrino with the mass mi

νlL(x) =
3∑

i=1

Uli νiL(x)



The Dirac mass term is invariant under the global phase
transformations

νi (x) → e i Λνi (x), l(x) → e i Λ li (x), q(x) → q(x)

Λ is an arbitrary constant
The total lepton number L = Le + Lµ + Lτ is conserved
νi (x) is the four-component Dirac field of neutrinos and

antineutrinos with the same mass mi and different lepton numbers
L(νi ) = 1, L(ν̄i ) = −1

(for example, neutrinoless double β-decay
(A,Z ) → (A,Z − 2) + e + e is forbidden)

Remark
ν(x) and νc(x) = C ν̄T (x) (CγTα C−1 = −γα, CT = −C ) neutrino

field and conjugated neutrino field
νL,R(x) is left(right) component

(νL,R(x))
c is right(left) component



The most general DIRAC AND MAJORANA MASS TERM

LD+M = −1

2
ν̄LML(νL)

c − ν̄LM
D νR − 1

2
(νR)c MRνR + h.c.

ML and MR are symmetrical 3× 3 matrices
After the standard diagonalization of the mass term we find

LD+M(x) = −1

2

6∑
i=1

mi ν̄i (x) νi (x)

νi (x) is the field of neutrino with mass mi which satisfies the
Majorana condition

νi (x) = νci (x) = C ν̄Ti (x)

Majorana field

ν(x) =

∫
Np[ar (p)e

−ipxur (p) + a†r (p)e
ipxur (−p)]d3p

ar (p) (a
†
r (p)) is the operator of absorption (creation) of neutrino



No antineutrinos. (νi ≡ ν̄i )
No global gauge invariance → no conserved lepton number → no

way to distinguish neutrino and antineutrino
Mixing relations

νlL =
6∑

i=1

Uli νiL, (νlR)
c =

6∑
i=1

Ul̄ i νiL l = e, µ, τ

Active νlL and sterile (νlR)
c fields are mixtures of the fields of six

Majorana neutrinos with definite masses
Special case. Majorana mass term

LM = −1

2
ν̄LML(νL)

c + h.c.

ML is symmetrical 3× 3 complex matrix



After the standard diagonalization

LM(x) = −1

2

3∑
i=1

mi ν̄i (x) νi (x)

νi (x) = νci (x) = C ν̄Ti (x) is Majorana field (i=1,2,3)
Mixing relation

νlL =
3∑

i=1

Uli νiL l = e, µ, τ

The most economical case: left-handed neutrino fields enter into
interaction and into mass term. No sterile neutrino fields in the

Lagrangian



General conclusions from the consideration of possible neutrino
mass terms

I. Neutrino with definite masses νi can be Dirac particle (neutrino
and antineutrino differ by a conserved lepton number) or Majorana

particle (neutrino and antineutrino are identical)
What is the nature of massive neutrinos? This is the most

fundamental problem solution of which will be extremely important
for the understanding of the origin of neutrino masses

The problem can be solved by the observation (or non observation)
of 0νββ-decay (A,Z ) → (A,Z + 2) + e + e

If 0νββ-decay will be observed νi are Majorana particles
If 0νββ-decay will be not observed but neutrino mass will be

measured in tritium experiments, νi are Dirac particles
II.Number of massive neutrinos can be larger than the number of

flavor neutrinos
From the measurement of the width of the decay Z → νl + ν̄l

(LEP)

Nνl = 2.984± 0.008



If the number of light νi is larger than three

νlL =
3+ns∑
i=1

Uli νiL l = e, µ, τ

νsL =
3+ns∑
i=1

Usi νiL s = s1, ...sns

All flavor neutrinos (νe , νµ, ντ ) were observed in direct experiments
Sterile neutrinos νs can not be produced in weak processes

There are two ways to reveal existence of the sterile neutrinos



I. Sterile neutrinos can be produced in oscillations νl → νs
If neutrinos are detected through NC processes transition

probability is given∑
l ′=e,µ.τ

P(νl → νl ′) = 1−
∑
s

P(νl → νs)

If there are no transitions into sterile neutrinos no oscillations
If there are transitions into sterile neutrinos transition probability

depends on L
E and oscillates

II. The number of neutrino mass-squared differences in the
probability of the transition νl → νl ′ is equal 2 + ns

Thus, if the number of neutrino mass-squared differences is larger
than two. sterile neutrinos exist

During many years exist indications in favor of ν̄µ → ν̄e transitions
with ∆m2 ≃ 1eV2 (LSND)

In the MiniBooNE experiment this indications was checked
In the channel νµ → νe LSND result was not confirmed

In the channel ν̄µ → ν̄e some indication in favor of the transition
was found Further experiments are necessary,



Why neutrino oscillations is a signature of a new physics?
Neutrino are massive and mixed, but quarks are also massive and

mixed
In the quarks case we believe that quarks masses are due to SM

physics
Why neutrinos...

Because neutrino masses are many order of magnitude smaller
than masses of quarks and leptons

Let us consider for illustration the third family

mt ≃ 1.7 · 102 GeV, mb ≃ 4.7 GeV

m3 ≤ 2.2 10−9 GeV, mτ ≃ 1.8 GeV

Very unlikely that masses of quarks, leptons and neutrinos are of
the same origin

We believe that masses of quarks and lepton are due to the SM
Higgs mechanism

For neutrino masses a new (or additional) mechanism is needed



Special case of the D+M mass term. The seesaw mechanism
Let us consider D+M mass term in the simplest case of one

generation

LD+M = −1

2
mLν̄L(νL)

c −mD ν̄LνR − 1

2
mR(νR)cνR + h.c.

Assume that mL,R and mD are real parameters
The mass term can be easily diagonalized

LD+M = −1

2

∑
i=1,2

mi ν̄i νi

ν1,2 are Majorana fields and we have mixing relations

νL = cos θ ν1L + sin θ ν2L (νR)
c = − sin θ ν1L + cos θ ν2L



Neutrino masses m1,2 and mixing angle θ are connected with the
parameters mL,R and mR

m1,2 =

∣∣∣∣12 (mR +mL)∓
1

2

√
(mR −mL)2 + 4m2

D

∣∣∣∣
tan 2 θ =

2mD

mR −mL

We will assume now

1. There is no left-handed Majorana mass term mL = 0

2. The Dirac mass term is generated by the Standard Higgs
mechanism, i.e. mD is of the order of a mass of quark or
lepton

3. The right-handed Majorana mass term is the only term which
does not conserve lepton number. We assume that the lepton
number is violated at a scale which is much larger than the
electroweak scale mR ≡ MR ≫ mD



The seesaw masses of the Majorana particles are given

m1 ≃
m2

D

MR
≪ mD , m2 ≃ MR ≫ mD

The mixing angle

θ ≃ mD

MR
≪ 1.

In the seesaw approach the smallness of neutrino masses is
connected with violation of the total lepton number at a large

scale given by MR .The suppression factor is given by the ratio of
the electroweak scale and the scale of the violation of the lepton

number (mD
MR

)

If mD ≃ mt ≃ 170 GeV and m1 ≃ 5 · 10−2 we find

MR ≃ m2
D

m1
≃ 1015 GeV.



In the case of three families the seesaw matrix has the form

M =

(
0 mD

mT
D MR

)
mD and MR are 3×3 matrices and MR ≫ mD .

The matrix M can be presented in block-diagonal form by the
unitary transformation

UT M U =

(
−mDM

−1
R mT

D 0
0 MR

)
The 3×3 Majorana neutrino mass matrix is given by

mν = −mD M−1
R mT

D .

There are many parameters in the matrix, but large denominator
ensure the smallness of neutrino masses with respect to masses of

leptons and quarks



General conclusions from the seesaw mechanism
I. Neutrinos are Majorana particles.

II. Neutrino masses are much smaller than lepton and quark
masses.

III.Heavy Majorana particles, the seesaw partners of neutrinos,
must exist.

CP-violating decays of heavy Majorana particles in the early
Universe is considered as a possible source of the barion asymmetry
of the Universe (lepton asymmetry generate barion asymmetry)

We have discussed the standard seesaw mechanism
Equivalent more specific possibility of the explanation of the

smallness of neutrino masses is based on the effective Lagrangian
approach



Assume that the Lagrangian is the sum of the SM Lagrangian with
massless neutrinos and non renormalizable effective Lagrangian

Leff = −
∑

l ′l=e,µ,τ

(ψT
l ′L C

−1τ2 ϕ) (yl ′l
1

M
)(ϕT τ2 ψlL) + h.c.

ψlL =

(
νlL
lL

)
ϕ =

(
ϕ+

ϕ0

)
ψlL and ϕ are SU(2) lepton and Higgs doublets

Leff is dimension-five operator which does not conserve L
Because the Lagrangian has dimension four, M has a dimension of

a mass (assuming that yl ′l are dimensionless coefficients)
The parameter M characterizes a (large) scale at which the

Standard Model is violated



If we put

ϕ(x) =

(
0

v+H(x)√
2

,

)

electroweak SU(2)× U(1) symmetry will be spontaneously broken
v ≃ 246 GeV is vacuum expectation value of the Higgs field

H(x) is the field of Higgs boson
After the spontaneous violation of the symmetry the left-handed
Majorana mass term is generated from the effective Lagrangian

LM =
1

2

∑
l ′l

νTl ′L C−1MM
l ′l νlL + h.c.

The matrix

MM
l ′l =

yl ′l v
2

M

has the typical seesaw structure



The effective Lagrangian Leff can be induced by three different
interactions between SM particles and very heavy Majorana or

neutral scalar (beyond the SM ) particles:
I.An interaction of lepton-Higgs pairs with a heavy Majorana
singlet fermion NR . The Lagrangian Leff is induced by the

diagrams with exchange of a virtual NR between lepton-Higgs pairs
II. An interaction of lepton pairs and Higgs pair with triplet heavy
scalar boson ∆ The effective Lagrangian Leff is induced by the
diagrams with exchange of a virtual ∆ between lepton and Higgs

pairs.
III. An interaction of lepton-Higgs pairs with heavy Majorana triplet
fermion ΣR . The diagrams with exchange of a virtual ΣR between

the lepton-Higgs pairs induce the effective Lagrangian Leff .
Models with interactions I, II and III are called type I(standard),

type II and type III seesaw models



We will discuss now neutrino oscillation phenomenon
For this phenomenon uncertainty relations are important

Uncertainty relations
are based on the Cauchy inequality

|a+b|2 ≤ (a+a)(b+b)

where a and b are any vectors
Consider vectors A|a⟩ and B|a⟩ where |a⟩ is any state and A = A†

and B = B† are hermitian operators
Cauchy inequality takes the form

|⟨a|AB|a⟩|2 ≤ ⟨a|A2|a⟩⟨a|B2|a⟩
We have

AB =
1

2
[A,B]− +

1

2
[A,B]+

Taking into account that ⟨a|AB|a⟩∗ = ⟨a|BA|a⟩
we conclude that ⟨a|[A,B]−|a⟩ is imaginary and ⟨a|[A,B]+|a⟩

is real



From Cauchy inequality we have in this case

⟨a|A2|a⟩⟨a|B2|a⟩ ≥ 1

4
|⟨a|[A,B]−|a⟩|2

Let us now make the change A → A− A and B → B − B
A = ⟨a|A|a⟩ is the average value of A

We have inequality

∆A ∆B ≥ 1

2
|⟨a|[A,B]−|a⟩|

∆A =
√

⟨a|(A− A)2|a⟩ is the standard deviation
Nontrivial constraints for noncommuting operators

If we know commutator the inequality takes the universal form (the
same form for any states |a⟩)

For example, for operators p and q with [p.q] = 1
i we have

Heisenberg uncertainty relation ∆p ∆q ≥ 1

2



Less familiar
Time-energy uncertainty relation ∆E ∆t ≥ 1
Exist different interpretation of this relation

We will consider Mandelstam-Tamm time-energy uncertainty
relation

In the Heisenberg representation states do not depend on t.
Operators depend on t and satisfy the equation

i
∂O(t)

∂t
= [O(t),H]

H is the total Hamiltonian. Commutator [O(t),H] determines
derivative of the operator

We have inequality

∆E ∆O(t) ≥ 1

2
| d
dt

O(t)| O(t) = ⟨a|O(t)|a⟩



For stationary states (H|a⟩ = E |a⟩ ) ∆E = 0 and d
dtO(t)| = 0 no

constraints
Nontrivial constraints only in the case of nonstationary states
Taking into account that ∆E does not depend on t we have

∆E

∫ ∆t

0
∆O(t)dt ≥ 1

2
|O(∆t)− O(0)|

From this inequality

∆E ∆t ≥ 1

2

|O(∆t)− O(0)|
∆O(t̄)

For the time interval ∆t during which the state of the system is
significantly changed (O(t) is changed on the value which is

characterized by the standard deviation), rhs is of the order of one
We come to the Mandeshtam-Tamm time-energy uncertainty

relation

∆E ∆t ≥ 1



QFT basics of neutrino oscillations
I. CC lepton current

jCCα (x) = 2
∑

l=e,µ,τ

ν̄lL(x) γα lL(x)

CC interaction is responsible for production and detection of
neutrinos

II. Mixing relation for neutrino fields

νlL(x) =
3∑

i=1

Uli νiL(x)

νi (x) is the field of neutrino (Majorana or Dirac) with mass mi

The main problem is how to obtain from these field-theoretical
relations observable neutrino transition probabilities. There are

many different opinions. A lot of discussions. Hundreds of lengthy
papers



The physics of neutrino oscillations is the same as physics of

B0 � B
0
, K 0 � K

0
, etc oscillations

The formalism of B0 � B
0
etc oscillations was confirmed by

high-precision B-factory and other experiments
States with definite masses and widths (eigenstates of the total

Hamiltonian)
|BH,L⟩ = p|B0⟩ ∓ q|B0⟩

p and q are mixing parameters, |B0⟩ and |B0⟩ are flavor states
(eigenstates of the Hamiltonian of the strong (and

electromagnetic) interaction)
We have the mixing relation

|B0⟩ = 1
2p (|BH⟩+ |BL⟩), |B0⟩ = 1

2q (−|BH⟩+ |BL⟩)



Basics of B0 � B
0
etc oscillations

I. In strong processes flavor is conserved and particles with definite

flavor B0, B
0
, etc are produced.

In other words: Mass difference of BH and BL is determined by the
forth order od the electroweak interaction (box diagram). It can
not be resolved in production processes. As a result a coherent

superposition is produced
Flavor particles are also detected

II. Evolution of mixed flavor states is given by the Schrodinger
equation

i
∂

∂t
|Ψ(t)⟩ = H |Ψ(t)⟩ |Ψ(t)⟩ = e−iHt |Ψ(0)⟩



If at t = 0 B0 is produced, at t > 0 we have

|B0(t)⟩ = 1

2p
(e−iµH t |BH⟩+e−iµLt |BL⟩) = g+(t)|B0⟩− q

p
g−(t)|B

0⟩

g±(t) =
1
2(e

−iµH t ± e−iµLt), µH,L = mH,L − 1
2ΓH,L

We will discuss now neutrino oscillations
Neutrinos are produced in CC weak decays and reactions. Let us

consider (in lab. system) a decay

a → b + l+ + νi i = 1, 2, 3

Sum of the states of the final particles

|f ⟩ =
∑
i

|b ⟩|l+⟩|νi ⟩⟨b l+νi |S |a⟩

⟨b l+νi |S |a⟩ is the matrix element of the process. We assume, as
usual, that initial and final particles have definite momenta.

Neutrino momenta are pi .



If neutrino masses are equal, we have pi = pk
Thus, we have

pi ≃ p + a
∆m2

1i

2E

p is the momentum of the lightest neutrino, E ≃ p is the neutrino
energy and a is a constant of the order of one

From neutrino oscillation data follows that
∆m2

1i
E2 ≤ 10−17. Thus, in

the matrix element differences in neutrino momenta can be safely
neglected

Lepton part of the matrix element
U∗
li ūL(pi )γαu(−pl) ≃ U∗

li ūL(p)γαu(−pl)
For the matrix element we have

⟨b l+νi |S |a⟩ ≃ U∗
li ⟨b l+νl |S |a⟩SM

⟨b l+νl |S |a⟩SM is the SM matrix element of the process of
production of flavor neutrino νl in the process a → b + l+ + νl)

Dependence on i only in U∗
li



The final state take the form
|f ⟩ =

∑
l |b ⟩|l+⟩|νl⟩⟨b l+νl |S |a⟩SM

Here

|νl⟩ =
3∑

i=1

U∗
li |νi ⟩ (l = e, µ, τ)

We will consider now possibilities to reveal neutrino masses from
the point of view of the Heisenberg uncertainty relation

(∆p)QM ≃ 1

d

where d characterizes a microscopic dimension of a source
Difference of momenta of neutrinos with different masses

|pk − pi | ≃
|∆m2

ik |
2E = 1

L0ik

L0ik is macroscopic distance: for the reactor neutrinos L012 ≃ 10 km.
For the accelerator neutrinos L023 ≃ 100 km



Thus, L0ik ≫ d and |pk − pi | ≪ (∆p)QM

It follows from uncertainty relation that it is impossible to reveal
different neutrino masses for neutrinos with energies relevant for

neutrino oscillation experiments
The state of the flavor neutrino νl (l = e, µ, τ)

I. Coherent superposition of the states of neutrinos with different
masses

II. Do not depend on process
III. Orthogonal and normalized

⟨νl ′ |νl⟩ = δl ′l



What happen with the state of the produced flavor neutrino? As in
the case of B0 − B̄0 we assumed first that this state is an initial

state (t = 0) in the Schrodinger equation
At the time t for the neutrino state we have

|Ψ(t)⟩νl = e−iH0t
∑
i

|νi ⟩ U∗
li =

∑
i

|νi ⟩e−iEi t U∗
li

Thus, neutrino state is a superposition of states with different
energies (nonstationary state)

Neutrinos are detected via observation of weak processes in which
flavor neutrinos are participating. We have

|Ψ(t)⟩νl =
∑
l1

|νl1⟩(
∑
i

Ul1i e
−iEi t U∗

li )

Let us consider the matrix element of the process νl1 +N → l ′+X



Matrix element of the process

⟨l ′ X |S |νl1 N⟩ = U∗
l1i ⟨l

′ X |S |νl1 N⟩

Neglecting
∆m2

ik
2E2 we have

⟨l ′ X |S |νl1 N⟩ ≃ Ul ′i ⟨l ′ X |S |νl ′ N⟩SM

Taking into account unitarity of the mixing matrix
(
∑

i U
∗
l1i
Ul ′i = δl1l ′) we find

⟨l ′ X |S |νli N⟩ ≃ δl1l ′⟨l
′ X |S |νl ′ N⟩SM

1. In neutrino production and detection processes the lepton
flavor is conserved.

2. Matrix elements of these processes are given by the Standard
Model and do not depend on any characteristics of individual
massive neutrinos.



To the chain of the processes a → b + l+ + νl νl → νl ′

νl ′ + N → l ′ + X
corresponds the product

⟨b l+νl |S |a⟩SM

(∑
i

Ul ′i e
−iEi t U∗

li

)
⟨l ′ X |S |νl ′ N⟩SM

Only amplitude of the transition νl → νl ′ depends on the
properties of massive neutrinos (mass-squared differences and

mixing angles)
The factorization is based on the Heisenberg uncertainty relation



The probability of the transition νl → νl ′

P(νl → νl ′) = |
∑
i

Ul ′i e
−iEi t U∗

li |2 = |δl ′l+
∑
i ̸=k

Ul ′i (e
−i(Ei−Ek) t−1) U∗

li |2

The transition take place if

|Ek − Ei | t ≥ 1

This is Mandelstam-Tamm time-energy uncertainty relation
t is the time interval during which the transition happens,
|Ek − Ei | is the energy uncertainty of the neutrino state

Space-momentum and time-energy uncertainty relations are the
basis for neutrino oscillations



Flavor state |νl⟩ is characterized by (one) momentum p⃗
Due to relativistic invariance p2i = m2

i and

Ei =
√

p2 +m2
i ≃ E +

m2
i

2E

For ultra relativistic neutrinos the time of the propagation of
neutrino signal is equal to distance between neutrino source and

detector

t = L

We come to the standard expression for the neutrino transition
probability

P(νl → νl ′) = |δl ′l +
∑
i ̸=k

Ul ′i (e
−i

∆m2
ik

2E
L − 1) U∗

li |2



In the case of the evolution in time (Schrodinger equation)
transition probability depends on t and the relation t = x is used
In some (many) papers on neutrino oscillations evolution in x and
t is considered with evolution operator e−iPx (Pα = (H.P⃗) is the

total momentum, xα = (t .⃗x) is space-time coordinate
Let us assume that at the space-time point x = 0 flavor neutrino
νl is produced and the vector of the flavor neutrino is given

|νl⟩ =
∑

i U
∗
li |νi ⟩

|νi ⟩ is the state of neutrino with mass mi and 4-momentum pi
For the neutrino state at the point x we have

|νl⟩x = e−iPx |νl⟩ =
∑
i

e−ipixU∗
li |νi ⟩ =

∑
l ′

|νl ′⟩

(∑
i

Ul ′ie
−ipixU∗

li

)

Transition probability νl → νl ′ is given



P(νl → νl ′) =
∑
i ,k

Ul ′iU
∗
l ′ke

−i(pi−pk )xU∗
liUlk

Assume p⃗i = pi k⃗ (k⃗ is an unit vector)
The phase difference at the distance L after the time t

(pi − pk)x = (pi − pk)L− (Ei − Ek)t, i ̸= k

For Ei ≫ mi we have pi = Ei −
m2

i
2E

The phase difference

(pi − pk)x =
∆m2

ik

2E
L− (Ei − Ek)(t − L)

For the ultra relativistic neutrinos t ≃ L and the last term
disappears



We come to the standard expression for the phase difference

(pi − pk)x =
∆m2

ik

2E
L

and the standard neutrino transition probability
Nevertheless this “QFT derivation”of the transition probability is

wrong
There are two reasons

1.e−iPx is not operator of the evolution of states
2.The state |νl⟩ can not depend on x (can not be localized)



The operator e−iPx is the evolution operator of fields
This follows from invariance under translations

x ′ = x + a, ais an arbitrary 4− vector

From invariance under translations we have that states and
operators are transformed as follows

|Φ′⟩ = e−iPa |Φ⟩, O(x + a) = e iPa O(x) e−iPa

O(x) is a field operator and P is the operator of the total
momentum

Calculating a derivative over a we obtain the equation

i ∂αO(x) = [O(x),Pα]

General solution of this equation

O(x) = e iPx O(0) e−iPx

This means that e−iPx is the operator of evolution of the field
operators (not vectors of the states)

|νl⟩ =
∑
i

U∗
li |νi ⟩, |νi ⟩ = c†−1(pi )|0⟩

c†−1(pi ) is the operator of the creation of neutrino with momentum
pi , mass mi and helicity equal to -1. vector |νi ⟩ does not depend

on x



Let us consider neutrino evolution in the framework of Quantum
Mechanics

Wave function of a neutrino, produced in a CC process as a flavor
neutrino νl , is the superposition of plane waves

ψνl (x⃗ , t) =
∑
i

U∗
li e

i(p⃗i x⃗−Ei t)u(−1)(pi )

where u(−1)(pi ) satisfies the Dirac equation

γ · piu(−1)(pi ) = mi u
(−1)(pi )

Normalized amplitude of the transition νl → νl ′ at the macroscopic
distance L after the time t

A(νl → νl ′) =
∑
i

Ul ′ie
i(piL−EiT ) U∗

li

piL− Ei t is the change of the phase of the plane wave which
describes νi at the distance L after the time t

For the ultrarelativistic neutrinos L = t and we come to the
standard expression for the transition probability



So, the standard expression could be the result of the QM
evolution of the mixed neutrino wave function

Let us stress that in QM approach to neutrino oscillations the
notion of flavor neutrino states is not appeared.

REMARK
Evolution of states in QFT is described by the Schrodinger

equation
The Dirac equation in QM

iγα∂αψ(x) = mψ(x)
For the ”mixed” wave function

iγα∂αψνl (x) =
∑
i

miU
∗
li e

i(p⃗i x⃗−Ei t)u(−1)(pi ) ̸= mψνl (x)

If any wave function of a particle with spin 1/2 must satisfy the
Dirac equation? It is an open problem and study of neutrino

oscillations can in principle answer the question



WAVE PACKET APPROACH
Let us take into account distribution of momenta of initial

neutrinos due to the uncertainty relation
For the νl → νl ′ transition amplitude we have in this case

A(νl → νl ′) =
∑
i

Ul ′i

∫
e−i(p⃗′i x⃗−E(p⃗′

2
i ))t f (p⃗′i − p⃗i ) d

3p′ U∗
li ,

E (p⃗′
2

i ) =

√
p⃗′

2

i +m2
i . The function f (p⃗′i − p⃗i ) has a sharp

maximum at the point p⃗′i = p⃗i . We assume also that

|p⃗′i − p⃗i | ≪ pi .
We have the expansion

E (p⃗′i
2
) ≃ Ei + (p⃗′i − p⃗i ) · v⃗i

vki =
∂E (p′2i )

∂p′ki
|p′ki =pki

=
pki
Ei



For the amplitude of the transition νl → νl ′ we find

A(νl → νl ′) =
∑
i

Ul ′ie
−i p⃗i x⃗−iEi tg(x⃗ − v⃗i t) U

∗
li

where

g(x⃗ − v⃗i t) =

∫
e i q⃗ (x⃗−v⃗i t) f (q⃗) d3q.

From the amplitude in the plane wave approximation A(νl → νl ′)
differs by the factor which (due to relation between momentum

and energy) depends on x⃗ − v⃗i t
Usually it is assumed that the function f (q⃗) has Gaussian form

f (q⃗) = Ne
− q2

4σ2
p

σp is a width



After the integration we find

g(x⃗ − v⃗i t) = N(
π

σ2x
)3/2 e

− (⃗x−v⃗i t)
2

4σ2
x

σ2x =
1

4σ2p

σx characterizes spacial width of the wave packet
x and t are macroscopic quantities much larger than σx

Thus, for ultrarelativistic neutrinos the amplitude g(x⃗ − v⃗i t)
provides the equality x ≃ t

In the wave packet approach the probability of the transition
νl → νl ′ is determined as integrated over the time quantity

(assuming that the time is not measured)

P(νl → νl ′) =

∫ +∞

−∞
|A(νl → νl ′)|2dt

This integration provide the equality x ≃ t and allows to calculate
small terms due to σx



Integrated transition probability

P(νl → νl ′) = N2(
π

σ2x
)3
∑
i ,k

Ul ′iU
∗
l ′ke

i(pi−pk )xU∗
liUlk

∫ +∞

−∞
e
− t2

2σ2
x dt e−A.

Here

A = −i(Ei − Ek)x +
1

2σ2x

(
∆m2

ik

4E 2

)2

x2 +
1

2
σ2xξ

2∆m2
ik

2E

We took into account that

Ei = E + ξ
∆m2

1i

2E
,

The coefficient ξ is of the order of one
From the first term for the expression for A follows that the wave

packet approach provides the relation t ≃ x
We find the standard expression for the oscillation phase

[(pi − pk)− (Ei − Ek)]x =
∆m2

ik

2E
x .



Additional terms
The second term of A is due to the relation

(vi − vk) =
∆m2

ik

2E 2

Thus, this term is different from zero because neutrino with
different masses have different velocities. For the ultra relativistic

neutrinos this term is extremely small.
As we discussed before, due to the condition

|pi − pk | ≃ |
∆m2

ik

2E
| ≪ 1

σx

flavor neutrino states are coherent.
From this condition follows that the third term of the expression A

is also small.



The normalized νl → νl ′ transition probability

P(νl → νl ′) =

∑
i ,k

Ul ′iU
∗
l ′ke

i
∆m2

ik
2E

LU∗
liUlk

e
−( L

Lik
coh

)2

e
−2π2ξ2( σx

Liko
)2

.

Here L = x is the distance between source and detector and in the
brackets the standard expression for the transition probability

Likcoh =
4
√
2σxE

2

|∆m2
ik |

, Liko = 4π
E

|∆m2
ik |

are coherence and oscillation lengths
The coherence length characterizes the time interval (distance) at
which the distance between νi and νk becomes comparable with

the size of the wave packet:

|(vi − vk)| Likcoh ∼ σx .



We have

Likcoh =
E√
2πσp

≫ Liko

Thus, the coherence length is much larger than the oscillation
length

The second multiplier in the expression for the transition
probability is practically equal to one for any conceivable neutrino

oscillation experiments
The effect of the decoherence could be important only for huge

cosmological distances.
The condition of the coherence of the states of neutrinos with

different masses

Liko ≫ σx .

The third multiplier in the expression for the transition probability
is also practically equal to one



Conclusion
The wave packet approach bring us to the standard plane wave

expression for the transition probability
The wave packet approach allows to justify the correctness of the

plane wave approximation and the relation x = t


