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Motivation

Motivation for horizontal symmetries:

Gatto, Sartori, Tonin; Cabibbo, Maiani (1968):

sin θc ≃
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Harrison, Perkins, Scott (2002):
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 e i β̂ ≡ UHPS e i β̂

Mass spectra of charged fermions (up quarks, down quarks,
charged leptons) strongly hierarchical!
Mixing angles = functions of quark mass ratios?
Mass spectrum of neutrinos: either completely different or
hierarchy not so pronounced
Mixing angles “pure numbers”?
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Motivation

Neutrino mass spectrum non-degenerate:

6 6
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normal

∆m2
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inverted
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spectrum

Hierarchical spectrum: normal with m1 → 0

∆m2
atm/∆m2

⊙ ∼ 30 ⇒ m3/m2 ≃
√

∆m2
atm/∆m2

⊙ ∼ 5 ÷ 6

Inverted hierarchy: inverted with m3 → 0
Smallest ν mass ms :
ms = m1 for normal, ms = m3 for inverted
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Neutrino mass terms and parameter counting

Assumptions:

❒ Majorana neutrinos

❒ Charged-lepton mass matrix diagonal
(for the purpose of parameter counting)

Majorana neutrino mass term:

LMaj =
1

2
νT
L C−1MννL + H.c.

Mν complex, symmetric!
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Neutrino mass terms and parameter counting

Assumptions:

❒ Majorana neutrinos

❒ Charged-lepton mass matrix diagonal
(for the purpose of parameter counting)

Majorana neutrino mass term:

LMaj =
1

2
νT
L C−1MννL + H.c.

Mν complex, symmetric!

Theorem (Schur)

MT
ν = Mν ⇒∃ unitary matrix U with

UTMνU = diag (m1,m2,m3) with mj ≥ 0

PMNS or lepton mixing matrix U (modulo phase multiplications
from the left)

Walter Grimus (University of Vienna) Theory of Neutrino Masses and Mixing



Neutrino mass terms and parameter counting

Parameterization of the mixing matrix:

U = e i α̂U23U13U12 diag
(
1, e iβ1 , e iβ2

)

with e i α̂ = diag
(
e iα1 , e iα2 , e iα3

)

e i α̂ are unphysical phases in charged current interaction
(can be absorbed into the charged lepton fields)

U23 =





1 0 0
0 c23 s23
0 −s23 c23





U13 =





c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13





U12 =





c12 s12 0
−s12 c12 0

0 0 1
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Neutrino mass terms and parameter counting

U23U13U12 =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13





Conventions:

❖ 0◦ ≤ θij ≤ 90◦

❖ 0◦ ≤ δ < 360◦

❖ m1 < m2 with ∆m2
⊙ = m2

2 − m2
1

Physical phases:
CKM-type phase δ, Majorana phases β1, β2
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Neutrino mass terms and parameter counting

Parameter counting:

9 physical parameters: 3 masses, 3 angles, 3 phases

Physical parameters in Mν :
6 × 2 = 12 real parameters in Mν

first line and column can be made real by phase transformation ⇒
9 real physical parameters in Mν

Discrete physical parameter:
sign (m2

3 − m2
1) ⇒ normal vs. inverted mass spectrum
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Neutrino mass terms and parameter counting

Diagonalization of the neutrino mass matrix:

UTMνU = diag (m1,m2,m3) ≡ m̂ ⇒MνU = U∗m̂

U = (u1, u2, u3) ⇒ Mνuj = mju
∗
j
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Neutrino mass terms and parameter counting

Diagonalization of the neutrino mass matrix:

UTMνU = diag (m1,m2,m3) ≡ m̂ ⇒MνU = U∗m̂

U = (u1, u2, u3) ⇒ Mνuj = mju
∗
j

Note:

In general, uj is not an eigenvector of Mν , only for real uj .

If λ is an eigenvalue of Mν , then |λ| is in general NOT a
neutrino mass.

However, M†
νMνuj = m2

j uj .
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Basics

Definition of a group G :

G is a set with a multiplication rule

0 Closure:

g1 ∈ G , g2 ∈ G ⇒ g1g2 ∈ G

1 Associativity:

(g1g2)g3 = g1(g2g3)
2 Unit element:

It exists e ∈ G such that eg = g ∀ g ∈ G .
3 Inverse element:

∀ g ∈ G it exists g−1 ∈ G such that g−1 g = e.
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Basics

Definition of a group G :

G is a set with a multiplication rule

0 Closure:

g1 ∈ G , g2 ∈ G ⇒ g1g2 ∈ G

1 Associativity:

(g1g2)g3 = g1(g2g3)
2 Unit element:

It exists e ∈ G such that eg = g ∀ g ∈ G .
3 Inverse element:

∀ g ∈ G it exists g−1 ∈ G such that g−1 g = e.

Remarks:

left inverse = right inverse,
left unit element = right unit element,
inverse and unit element are unique

associativity always fulfilled for mappings
(permutations, matrices, . . . )
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Basics

Group representations:

⊲ Vector space V over C
⊲ L(V) = set of linear operators on V
⊲ D : G → L(V) such that D(g1g2) = D(g1)D(g2)

⊲ D(e) = 1
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Basics

Group representations:

⊲ Vector space V over C
⊲ L(V) = set of linear operators on V
⊲ D : G → L(V) such that D(g1g2) = D(g1)D(g2)

⊲ D(e) = 1
Unitary representation:

V with scalar product 〈x |y〉 and 〈D(g)x |D(g)y〉 = 〈x |y〉 ∀ g
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Basics

Group representations:

⊲ Vector space V over C
⊲ L(V) = set of linear operators on V
⊲ D : G → L(V) such that D(g1g2) = D(g1)D(g2)

⊲ D(e) = 1
Unitary representation:

V with scalar product 〈x |y〉 and 〈D(g)x |D(g)y〉 = 〈x |y〉 ∀ g

Irreducible representation: “irrep”

V does not have any non-trivial subspace W such that
D(g)W = W ∀ g

Walter Grimus (University of Vienna) Theory of Neutrino Masses and Mixing



Basics

Unitary representations can be decomposed into irreps!

Irreps are the smallest building blocks of representations

D(g) →








D1(g) 0 0 · · ·
0 D2(g) 0 · · ·
0 0 D3(g) · · ·
...

...
...

. . .
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Basics

Definition: H ⊆ G is a normal subgroup if gHg−1 = H ∀g ∈ G
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Basics

Definition: H ⊆ G is a normal subgroup if gHg−1 = H ∀g ∈ G

Definition: H normal subgroup of G , then the factor group G/H
consists of the cosets {H,Hg1,Hg2 . . .} with the multiplication rule
(H g) (Hg’) = Hgg’
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Basics

Definition: H ⊆ G is a normal subgroup if gHg−1 = H ∀g ∈ G

Definition: H normal subgroup of G , then the factor group G/H
consists of the cosets {H,Hg1,Hg2 . . .} with the multiplication rule
(H g) (Hg’) = Hgg’

Definition: g1 is conjugate to g2 if ∃g ∈ G such that gg1g
−1 = g2
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Basics

Definition: H ⊆ G is a normal subgroup if gHg−1 = H ∀g ∈ G

Definition: H normal subgroup of G , then the factor group G/H
consists of the cosets {H,Hg1,Hg2 . . .} with the multiplication rule
(H g) (Hg’) = Hgg’

Definition: g1 is conjugate to g2 if ∃g ∈ G such that gg1g
−1 = g2

Definition: “g1 conjugate to g2” defines an equivalence relation
⇒ the sets of equivalent elements are called conjugacy classes.
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Basics

Definition: H ⊆ G is a normal subgroup if gHg−1 = H ∀g ∈ G

Definition: H normal subgroup of G , then the factor group G/H
consists of the cosets {H,Hg1,Hg2 . . .} with the multiplication rule
(H g) (Hg’) = Hgg’

Definition: g1 is conjugate to g2 if ∃g ∈ G such that gg1g
−1 = g2

Definition: “g1 conjugate to g2” defines an equivalence relation
⇒ the sets of equivalent elements are called conjugacy classes.

Remarks:
{e} is a class.
A normal subgroup consists of complete conjugacy classes of G .
Let H be a proper normal subgroup of G ⇒

The mapping f : g ∈ G → Hg ∈ G/H is a homomorphism,
i.e., f (g)f (g ′) = f (gg ′).

Any representation D of G/H induces naturally a
representation D̄ of G via D̄(g) ≡ D(Hg).
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Basics

Direct product: G × G ′ with multiplication law
(g1, g

′
1)(g1, g

′
1) = (g1g

′
1, g2g

′
2)

E.g. S3 × Z2

Semidirect product: H ⋊φ G

G acts on H via the homomorphism φ : G → Aut(H)
Multiplication law: (h1, g1)(h2, g2) = (h1 φ(g1)h2, g1g2)
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Basics

Direct product: G × G ′ with multiplication law
(g1, g

′
1)(g1, g

′
1) = (g1g

′
1, g2g

′
2)

E.g. S3 × Z2

Semidirect product: H ⋊φ G

G acts on H via the homomorphism φ : G → Aut(H)
Multiplication law: (h1, g1)(h2, g2) = (h1 φ(g1)h2, g1g2)

Remarks: If φ = id ⇒ H ⋊φ G ≡ H × G

Useful question for model builiding: Can a group be decomposed
into a semidirect product?

Semidirect products are ubiquitous!
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Basics

Theorem

Group S, H proper normal subgroup of S, G subgroup of S with

following properties:

1 H ∩ G = {e},
2 every element s ∈ S can be written as s = hg with h ∈ H,

g ∈ G.

Then the following holds:

S ∼= H ⋊φ G with φ(g)h = ghg−1,

decomposition s = hg is unique,

S/H ∼= G.

s1s2 = (h1g1)(h2g2) = (h1g1h2g
−1
1 )(g1g2)
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Basics

Symmetries in the Lagrangian vs. symmetry groups:

Multiplet of (fermion) fields ψ1, . . . ψr

L = i

r∑

j=1

ψ̄jγ
µ∂µψj + · · ·

Symmetries ψj → A
(p)
jk ψk (p = 1, . . . ,Ngen) of L

A(p) (p = 1, . . . ,Ngen) unitary matrices!
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Basics

Symmetries in the Lagrangian vs. symmetry groups:

Multiplet of (fermion) fields ψ1, . . . ψr

L = i

r∑

j=1

ψ̄jγ
µ∂µψj + · · ·

Symmetries ψj → A
(p)
jk ψk (p = 1, . . . ,Ngen) of L

A(p) (p = 1, . . . ,Ngen) unitary matrices!

Two approaches to symmetries and Lagrangians:

❏ L ⇒ imposing symmetries A(p) on L ⇒
the A(p) represent generators of a group G ⇒
representation of G ⇒ G

❏ Group G ⇒ representations ⇒ multiplets of fields ⇒L
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Basics

Infinite vs. finite groups

Infinite groups: number of elements is infinite

❖ Infinitely many inequivalent irreps

❖ Non-compact simple Lie groups G possess no
finite-dimensional unitary irreps apart from the trivial reps
g → 1 ∀g ∈ G
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Basics

Infinite vs. finite groups

Infinite groups: number of elements is infinite

❖ Infinitely many inequivalent irreps

❖ Non-compact simple Lie groups G possess no
finite-dimensional unitary irreps apart from the trivial reps
g → 1 ∀g ∈ G

Finite groups:

◆ Finite number of inequivalent irreps

◆ All irreps can be considered unitary

◆ Since ordG is finite, all numbers concerning properties of the
group and its irreps are finite as well ⇒ extremely useful
relations (totally lacking in infinite groups)
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Basics

Infinite vs. finite groups

Infinite groups: number of elements is infinite

❖ Infinitely many inequivalent irreps

❖ Non-compact simple Lie groups G possess no
finite-dimensional unitary irreps apart from the trivial reps
g → 1 ∀g ∈ G

Finite groups:

◆ Finite number of inequivalent irreps

◆ All irreps can be considered unitary

◆ Since ordG is finite, all numbers concerning properties of the
group and its irreps are finite as well ⇒ extremely useful
relations (totally lacking in infinite groups)

Remarks:
ordG ≡ # elements of G

Irreps of U(1): e iα → e inα with n ∈ Z
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Theorems on finite groups

Subgroups:

Theorem (Lagrange)

H subgroups of G ⇒ ord H is a divisor of ordG
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Theorems on finite groups

Subgroups:

Theorem (Lagrange)

H subgroups of G ⇒ ord H is a divisor of ordG

Proof: g1, g2 ∈ G , consider the sets Hg1 and Hg2.
Suppose Hg1 ∩ Hg2 is not empty ⇒∃g ∈ Hg1 ∩ Hg2

⇒ g = hg1 = h′g2 with h, h′ ∈ H and g2 = h′−1
hg1

⇒ Hg1 = Hg2.
Consequently, either Hg1 = Hg2 or Hg1 ∩ Hg2 = ∅ ⇒
G can be written as
G = H ∪ Hg1 ∪ · · ·Hgn−1 with empty intersections
⇒ ordG/ord H = n Q.E.D.
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Theorems on finite groups

Subgroups:

Theorem (Lagrange)

H subgroups of G ⇒ ord H is a divisor of ordG

Proof: g1, g2 ∈ G , consider the sets Hg1 and Hg2.
Suppose Hg1 ∩ Hg2 is not empty ⇒∃g ∈ Hg1 ∩ Hg2

⇒ g = hg1 = h′g2 with h, h′ ∈ H and g2 = h′−1
hg1

⇒ Hg1 = Hg2.
Consequently, either Hg1 = Hg2 or Hg1 ∩ Hg2 = ∅ ⇒
G can be written as
G = H ∪ Hg1 ∪ · · ·Hgn−1 with empty intersections
⇒ ordG/ord H = n Q.E.D.

Definition: The order of an element g is the smallest number r

such that g r = e

Every element g ∈ G generates a cyclic subgroup Zr ⊆ G

The order of every element is a divisor of ordG
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Theorems on finite groups

Theorem

D(α) irrep of G , dimD(α) = dα, and the index α numbers all

inequivalent irreps ⇒
∑

α d2
α = ordG

Theorem

The number of inequvialent irreps D(α) = number of classes of G
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Finite groups used as family symmetries

Following types of finite groups usually occur:

❶ Groups of permutations

❷ Groups consisting of unitary matrices

❸ Direct products of such groups

❹ Semidirect products of such groups
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Finite groups used as family symmetries

Following types of finite groups usually occur:

❶ Groups of permutations

❷ Groups consisting of unitary matrices

❸ Direct products of such groups

❹ Semidirect products of such groups

Discussion of

S3, S4, A4 ≡ T , D4, T ′
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Finite groups used as family symmetries

Sn: group of all permutations of n objects

p =

(
1 2 · · · n

p1 p2 · · · pn

)

, ord Sn = n!

Cycle of length r : (n1 → n2 → n3 → · · · nr → n1) ≡ (n1n2n3 · · · nr )
All numbers n1, . . . , nr are different

Theorem

Every permutation is a unique product of cycles which have no

common elements

Example:

(
1 2 3 4 5 6
4 6 3 5 1 2

)

= (145)(3)(26)

Remarks:
Cycles which have no common element commute
A cycle which consists of only one element is identical with the
unit element of Sn
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Finite groups used as family symmetries

Theorem

The classes of Sn consist of the permutations with the same cycle

structure

Examples:
S3: e, (n1n2), (n1n2n3) ⇒ 3 classes ⇒ 3 inequivalent irreps
S4: e, (n1n2), (n1n2n3), (n1n2n3n4), (n1n2)(n3n4) ⇒ 5 classes ⇒

5 inequivalent irreps
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Finite groups used as family symmetries

Even and odd permutations:

Every permutation of Sn is associated with an n × n permutation
matrix

For instance (123) ∈ S3 →





0 0 1
1 0 0
0 1 0



 = (e2e3e1)

In general: p ∈ Sn → M(p) = (ep1ep2 · · · epn)

Definition: sgn(p) = det M(p)
Definition: even (odd) permutation with sgn(p) = +1 (−1)
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Finite groups used as family symmetries

Sign of cycles:
(n1n2n3 · · · nr−1nr ) = (n1nr )(n1nr−1) · · · (n1n3)(n1n2) ⇒
if r is even (odd) then the cycle is odd (even)

Remarks:
p → M(p) is an n-dimensional reducible representation
properties of determinant ⇒ p → sgn(p) is a 1-dimensional irrep

Theorem

Sn has exactly two 1-dimensional irreps:

p → 1 and p → sgn(p)

Dimensions if irreps of S3: 12 + 12 + d2
3 = 6 ⇒ d3 = 2

Dimensions if irreps of S4: 12 + 12 + d2
3 + d2

4 + d2
5 = 24 ⇒

d3 = 2, d4 = d5 = 3
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Finite groups used as family symmetries

Structure and irreps of S3:

Generators: h = (123), g = (12) with h3 = e, g2 = e, ghg = h2

Every element of S3 can be decomposed as
hkg ℓ with k = 0, 1, 2, ℓ = 0, 1

h Z3, g  Z2 ⇒ Structure of S3

S3
∼= Z3 ⋊ Z2

1-dimensional irreps: p → 1, p → sign(p)
correspond to irreps of S3/Z3

∼= Z2
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Finite groups used as family symmetries

2-dimensional irrep: (D(h))3 = (D(g))2 = 1
Without loss of generality: D(h) diagonal ⇒

h → D(h) =

(
ω 0
0 ω2

)

, g → D(g) =

(
0 1
1 0

)

with ω = e2πi/3
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Finite groups used as family symmetries

2-dimensional irrep: (D(h))3 = (D(g))2 = 1
Without loss of generality: D(h) diagonal ⇒

h → D(h) =

(
ω 0
0 ω2

)

, g → D(g) =

(
0 1
1 0

)

with ω = e2πi/3

Real version:

V T

(
ω 0
0 ω2

)

V =

(
cos 120◦ − sin 120◦

sin 120◦ cos 120◦

)

=

(

−1
2 −

√
3

2√
3

2 −1
2

)

V T

(
0 1
1 0

)

V =

(
1 0
0 −1

)

with V = 1√
2

(
1 −1
1 1

)
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Finite groups used as family symmetries

Structure and irreps of S4:

Definition: Klein’s four-group

K = {e, (12)(34), (13)(24), (14)(23)} ∼= Z2 × Z2

K normal subgroup of S4
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Finite groups used as family symmetries

Structure and irreps of S4:

Definition: Klein’s four-group

K = {e, (12)(34), (13)(24), (14)(23)} ∼= Z2 × Z2

K normal subgroup of S4

Theorem

Every element of s ∈ S4 can be uniquely decomposed as s = kp

with k ∈ K and p being a permutation of the numbers 2,3,4.

Proof: Suppose s ∈ S4 has the form s = k1p1 = k2p2

⇒ p2 = k1k2p1 ⇒ k1k2 ∈ K must map 1 into 1
⇒ k1k2 = e and k1 = k2, p1 = p2

Since ord K × ord S3 = 4 × 6 = 24 = ord S4

⇒ all elements of S4 can be written as kp Q.E.D.
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Finite groups used as family symmetries

(k1p1)(k2p2) = (k1p1k2p
−1
1 )(p1p2) ⇒

Structure of S4

S4
∼= K ⋊ S3

1-dimensional irreps: p → 1, p → sign(p)

2-dimensional irrep: kp → D2(p) where D2 is the 2-dim irrep of S3

(234) →
(
ω 0
0 ω2

)

, (34) →
(

0 1
1 0

)

Example: (12) = (12)(34) (34) →
(

0 1
1 0

)
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Finite groups used as family symmetries

3-dimensional irreps:
3-dimensional representation of K ∼= Z2 × Z2:
k1 6= k2 6= k3 6= k1 ⇒ k1k2 = k2k1 = k3

(34)2 = e, (34) commutes with (12)(34), etc.

(12) (34) → diag ( 1,−1,−1)

(13) (24) → diag (−1, 1,−1)

(14) (23) → diag (−1,−1, 1)

(34) →






1 0 0

0 0 1

0 1 0






(24) →






0 0 1

0 1 0

1 0 0






(23) →






0 1 0

1 0 0

0 0 1
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Finite groups used as family symmetries

✜ Two inequivalent 3-dim irreps: (34) → ±(e1e3e2) ✜

Summary of S4 irreps:

s = kp ∈ S4

1 : kp → 1
1′ : kp → sgn(p)
2 : kp → D2(p)
3 : kp → A(k)M3(p)
3′ : kp → sgn(p)A(k)M3(p)

A [(12) (34)] = diag (1,−1,−1), etc., . . .
M3(p) 3 × 3 permutation matrix
Note: sgn(p) ≡ det M3(p)
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Finite groups used as family symmetries

Alternating group An: Group of all even permutation of n

objects, ord An = n!/2

Note that Sn
∼= An ⋊ Z2 with Z2 genererated e.g. by (12)
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Finite groups used as family symmetries

Alternating group An: Group of all even permutation of n

objects, ord An = n!/2

Note that Sn
∼= An ⋊ Z2 with Z2 genererated e.g. by (12)

Theorem

An simple for n ≥ 5
A5 with 60 elements smallest simple group!
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Finite groups used as family symmetries

Alternating group An: Group of all even permutation of n

objects, ord An = n!/2

Note that Sn
∼= An ⋊ Z2 with Z2 genererated e.g. by (12)

Theorem

An simple for n ≥ 5
A5 with 60 elements smallest simple group!

Theorem (Properties of A4)

A4 has Klein’s four-group K as proper normal subgroup

A4/K ≃ Z3 with Z3 generated by (234)
Smallest group with a 3-dim irrep
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Finite groups used as family symmetries

Irreps of A4:

1 : kp → 1
1′ : k → 1, (234) → ω, (243) → ω2

1′′ : k → 1, (234) → ω2, (243) → ω

3 : k → A(k), (234) →





0 0 1
1 0 0
0 1 0



, (243) →





0 1 0
0 0 1
1 0 0





Remarks:
12 + 12 + 12 + 32 = 12 = ord A4

Four classes: {e}, {(12)(34), (13)(24), (14)(23)},
{(132), (124), (234), (143)}, {(123), (142), (243), (134)}
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Finite groups used as family symmetries

Dihedral groups Dn:

Definition: Dn is the group of order 2n generated by

Rn =

(

cos 2π
n

− sin 2π
n

sin 2π
n

cos 2π
n

)

, S =

(
1 0
0 −1

)

Dn consists of the elements {1,Rn, . . . ,R
n−1
n ,S ,RnS , . . . ,R

n−1
n S}

Properties: Rn
n = S2 = 1, SRnS = R−1

n = Rn−1
n
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Finite groups used as family symmetries

Dihedral groups Dn:

Definition: Dn is the group of order 2n generated by

Rn =

(

cos 2π
n

− sin 2π
n

sin 2π
n

cos 2π
n

)

, S =

(
1 0
0 −1

)

Dn consists of the elements {1,Rn, . . . ,R
n−1
n ,S ,RnS , . . . ,R

n−1
n S}

Properties: Rn
n = S2 = 1, SRnS = R−1

n = Rn−1
n

Discussion of D4: 8 elements, R4 rotation by 90◦, S reflection at
x-axis
Classes: {1}, {−1}, {±R4}, {±S}, {±R4S}
Dimensions of irreps of D4: 12 + d2

2 + · · · + d2
5 = 8

⇒ d2 = d3 = d4 = 1, d5 = 2
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Finite groups used as family symmetries

Irreps of D4:

D4 defined via 2-dim irrep!

1-dim irreps: S2 = R4
4 = 1, SR4S = R3

4 ⇒ S → ±1, R4 → ±1

1(p,q) : S → (−1)p, R4 → (−1)q
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Finite groups used as family symmetries

Subgroups of SO(3) vs. subgroups of SU(2)

Subgroup of SO(3)  subgroup of SU(2)

Connection between SO(3) and SU(2):
α = rotation angle, ~n = rotation axis

Every rotation induces exactly two SU(2) transformations via

U ~σ ·~x U† = ~σ ·(R(α,~n)~x) ⇒ U(α,~n) = ±
(

cos
α

2
1− i sin

α

2
~n · ~σ

)

With this construction, for every G ⊂ SO(3) one obtains its
double-valued group (covering group) G ′ ⊂ SU(2) such that
G ′/G ∼= Z2, ord G ′ = 2 × ordG
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Finite groups used as family symmetries

Double-valued group of A4: T ′

A4 ⊂ SO(3) via its 3-dim faithful irrep!
In this sense, A4 is generated by
A = diag (1,−1,−1) = R(180◦,~ex),

E =





0 1 0
0 0 1
1 0 0



 = R
(
−120◦, (~ex + ~ey + ~ez)/

√
3
)

⇒ T ′ generated by

UA = i

(
0 1
1 0

)

, UR =
1√
2

(
φ φ

−φ∗ φ∗

)

with φ = e iπ/4
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Finite groups used as family symmetries

Properties of T ′:

ord T ′ = 24

T ′/A4
∼= Z2 ⇒ irreps of A4 are also irreps of T ′

T ′ has 7 classes ⇒ 3 irreps missing

d2
5 + d2

6 + d2
7 = 12 ⇒ d5 = d6 = d7 = 2

U2
A = U3

R = −1, (UAUR)3 = 1
Eigenvalues of UAUR are ω, ω2
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Finite groups used as family symmetries

2-dim irreps of T ′:
Idea: Suppose D(β) is an irrep with dimension d > 1 ⇒
Two obvious ways for constructing further irreps of dimension d

Suppose D(1,α) (α = 1, . . . , r) lists all 1-dim irreps ⇒
irreps of dim d are obtained by

❶ g → D(1,α)(g) × D(β)(g)

❷ g → D(1,α)(g) × (D(β)(g))∗

Method 1 works with 2 of T ′:

2′ : UA → UA, UR → ωUR

2′′ : UA → UA, UR → ω2UR

Note:
T ′: 2 ∼= 2∗

A4: 1′ ⊗ 3 ∼= 1′′ ⊗ 3 ∼= 3 !
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Character tables and tensor products

Functions on G :

Unitary space with scalar product (f1|f2) = 1
ordG

∑

g∈G f ∗1 (g)f2(g)

Theorem

D(α) irreps of G with dimensions dα ⇒
∑

g∈G

D
(α)
ij (g−1)D

(β)
kl (g) =

ordG

dα
δαβδjkδil
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Character tables and tensor products

Functions on G :

Unitary space with scalar product (f1|f2) = 1
ordG

∑

g∈G f ∗1 (g)f2(g)

Theorem

D(α) irreps of G with dimensions dα ⇒
∑

g∈G

D
(α)
ij (g−1)D

(β)
kl (g) =

ordG

dα
δαβδjkδil

Note:
Theorem follows from Schur’s lemma
Unitary irrep ⇒ D

(α)
ij (g−1) = (D(α)(g)†)ij = (D(α)(g)ji )

∗
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Character tables and tensor products

Schur’s lemma:

1 D irrep on V, A linear operator on V such that AD = DA

⇒ A ∝ 1
2 Two non-equivalent irreps

D(1) acting on V1, D(2) acting on V2,
A : V1 → V2 such that AD(1) = D(2)A ⇒ A = 0
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Character tables and tensor products

Proof of theorem:

Part 1: D irrep on V with dimension d

A ≡
∑

h∈G D(h−1)BD(h) with B arbitrary linear operator on V
⇒ AD(g) = D(g)A ∀ g ∈ G ⇒ A = λ1
Choose Bij = δikδjl
Apq = λ(kl)δpq =

∑

h∈G D(h−1)pkD(h)lq
Computation of λ(kl) by summation over p = q:
λ(kl)d =

∑

h δkl = ordG δkl ⇒∑

h∈G D(h−1)pkD(h)lq = (ordG/d) δpqδkl ✔

Part 2: B : V1 → V2 arbitrary ⇒ A ≡∑h∈G D(2)(h−1)BD(1)(h)

fulfills AD(1) = D(2)A ⇒ A = 0 etc. Q.E.D.
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Character tables and tensor products

Definition

Character of an irrep:

χ(α) :
G → C
g → χ(α)(g) = Tr D(α)(g)
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Character tables and tensor products

Definition

Character of an irrep:

χ(α) :
G → C
g → χ(α)(g) = Tr D(α)(g)

Properties of characters:

◆ The character χ(α) is constant on every class Ck ⇒
denote value of character by χ

(α)
k on Ck

◆ χ(α)(e) = dα

◆ Let ck be the number of elements in class Ck ⇒
orthogonality relation

n∑

k=1

ck

(

χ
(α)
k

)∗
χ

(β)
k = δαβ ordG
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Character tables and tensor products

Proof of orthogonality relation:

∑

g∈G

(D(α)(g)ji )
∗D

(β)
kl (g) =

ordG

dα
δαβδjkδil

i = j , k = l , summation over i , k ⇒
∑

g∈G

(χ(α)(g))∗χ(β)(g) =
ordG

dα
δαβ dα = ordG δαβ

Sum over g ∈ G  sum over classes Q.E.D.
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Character tables and tensor products

Proof of orthogonality relation:

∑

g∈G

(D(α)(g)ji )
∗D

(β)
kl (g) =

ordG

dα
δαβδjkδil

i = j , k = l , summation over i , k ⇒
∑

g∈G

(χ(α)(g))∗χ(β)(g) =
ordG

dα
δαβ dα = ordG δαβ

Sum over g ∈ G  sum over classes Q.E.D.

Remarks: n = # classes

ON system
(√

c1
ordG

χ
(α)
1 , . . . ,

√
cn

ordG
χ

(α)
n

)

⇒ Nirreps ≤ n

Proof that Nirreps ≥ n needs different technique
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Character tables and tensor products

Characters and reducible representations:

D reducible representation, D(α) occurs nα times in D

⇒ multiplicity of D(α) in D given by nα = (χ(α)|χD)
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Character tables and tensor products

Characters and reducible representations:

D reducible representation, D(α) occurs nα times in D

⇒ multiplicity of D(α) in D given by nα = (χ(α)|χD)

Proof:
D(g) = D(γ)(g) ⊕ · · · ⊕ D(γ)(g)

︸ ︷︷ ︸

nγ summands

⊕D(δ)(g) ⊕ · · · ⊕ D(δ)(g)
︸ ︷︷ ︸

nδ summands

⊕ · · ·

⇒ χD =
∑

β nβχ
(β) Q.E.D.

Application:
Characters allow e.g. to reduce D(β) ⊗ D(β′)

Motivation for character tables
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Character tables and tensor products

Example: regular representation
Basis of vector space given by all group elements
{g1, g2, . . . , gN} with N ≡ ordG

gigj = R(gi )kjgk ⇒ R(gi ) is N × N permutation matrix

χR(e) = N, χR(g) = 0 ∀ g 6= e

(χ(α)|χR) =
1

N

∑

g

(χ(α)(g))∗χR(g)

=
1

N
(χ(α)(e))∗χR(e)

=
1

N
× dα × N = dα
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Character tables and tensor products

Example: regular representation
Basis of vector space given by all group elements
{g1, g2, . . . , gN} with N ≡ ordG

gigj = R(gi )kjgk ⇒ R(gi ) is N × N permutation matrix

χR(e) = N, χR(g) = 0 ∀ g 6= e

(χ(α)|χR) =
1

N

∑

g

(χ(α)(g))∗χR(g)

=
1

N
(χ(α)(e))∗χR(e)

=
1

N
× dα × N = dα

D(α) occurs dα times in regular representation ⇒∑

α d2
α = ordG
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Character tables and tensor products

Character table:

n = number of irreps = number of classes
Classes Ck , ck = number of members of Ck

ord (Ck) = order of elements of Ck

Irreps D(α), characters χ(α)(g) = Tr
(
D(α)(g)

)

χ
(α)
k = χ(α)(g) with g ∈ Ck

G C1 C2 · · · Cn

(# Ck) (c1) (c2) · · · (cn)
ord (Ck) ν1 ν2 · · · νn

D(1) χ
(1)
1 χ

(1)
2 · · · χ

(1)
n

D(2) χ
(2)
1 χ

(2)
2 · · · χ

(2)
n

...
...

...
...

...

D(n) χ
(n)
1 χ

(n)
2 · · · χ

(n)
n
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Character tables and tensor products

Conventions: D(1) trivial 1-dim irrep ⇒ χ
(1)
k = 1 ∀k

C1 = {e} ⇒ χ
(α)
1 = dα

First line and first column of character table

First line: 1 in all entries
First column: dimensions dα of irreps

ON system
√

ck

ordG






χ
(1)
k
...

χ
(n)
k




 (k = 1, . . . , n)

n∑

α=1

(

χ
(α)
k

)∗
χ

(α)
ℓ =

ordG

ck

δkℓ
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Character tables and tensor products

Character table of D4:

Classes:
C1 = {1}, C2 = {−1}, C3 = {±R4}, C4 = {±S}, C5 = {±R4S}
1-dim irreps 1(p,q) : S → (−1)p , R4 → (−1)q

Note: −1 = R2
4 ⇒−1→ 1 in 1-dim irreps

D4 C1 C2 C3 C4 C5

(# Ck) (1) (1) (2) (2) (2)
ord (Ck) 1 2 4 2 2

1(0,0) 1 1 1 1 1

1(1,0) 1 1 1 −1 −1

1(0,1) 1 1 −1 1 −1

1(1,1) 1 1 −1 −1 1
2 2 −2 0 0 0
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Character tables and tensor products

Example: 2 ⊗ 2

χ(2⊗2) = χ(2) × χ(2) = 4, 4, 0, 0, 0

(χ(2)|χ(2⊗2)) = 1
8 (2 × 4 + (−2) × 4) = 0

(χ(1(p,q))|χ(2⊗2)) = 1
8 (1 × 4 + 1 × 4) = 1

2 ⊗ 2 = 1(0,0) ⊕ 1(1,0) ⊕ 1(0,1) ⊕ 1(1,1)
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Character tables and tensor products

Character table of A4:

A4 C1 C2 C3 C4

(# Ck) (1) (3) (4) (4)
ord (Ck) 1 2 3 3

1 1 1 1 1
1′ 1 1 ω ω2

1′′ 1 1 ω2 ω
3 3 −1 0 0

Example: χ(3⊗3) = χ(3) × χ(3) = 9, 1, 0, 0

(χ(3)|χ(3⊗3)) = 1
12 (3 × 9 + 3 × (−1) × 1) = 2

(χ(1)|χ(3⊗3)) = (χ(1′)|χ(3⊗3)) = (χ(1′′)|χ(3⊗3)) =
1
12 (1 × 9 + 3 × 1 × 1) = 1

3 ⊗ 3 = 1 ⊕ 1′ ⊕ 1′′ ⊕ 3 ⊕ 3
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Character tables and tensor products

Classes:
C1 = {e},
C2 = {(12)(34), (13)(24), (14)(23)},
C3 = {(132), (124), (234), (143)},
C4 = {(123), (142), (243), (134)}
Generators of 3:

(12)(34) → A ≡





1 0 0
0 −1 0
0 0 −1



 , (243) → E =





0 1 0
0 0 1
1 0 0





1 : A → 1, E → 1
1′ : A → 1, E → ω2

1′′ : A → 1, E → ω
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Character tables and tensor products

Clebsch–Gordan coefficients for 3 ⊗ 3 of A4:

1 : e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3

1′ : e1 ⊗ e1 + ω2e2 ⊗ e2 + ωe3 ⊗ e3

1′′ : e1 ⊗ e1 + ωe2 ⊗ e2 + ω2e3 ⊗ e3

3 : e2 ⊗ e3, e3 ⊗ e1, e1 ⊗ e2;

e3 ⊗ e2, e1 ⊗ e3, e2 ⊗ e1
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Character tables and tensor products

Character table of S4:

Classes: C1 = {e}, C2 = transposition (2-cycle),
C3 = two transpositions, C4 = 3-cycle, C5 = 4-cycle

S4 C1 C2 C3 C4 C5

(# Ck) (1) (6) (3) (8) (6)
ord (Ck) 1 2 2 3 4

1 1 1 1 1 1
1′ 1 −1 1 1 −1
2 2 0 2 −1 0
3 3 1 −1 0 −1
3′ 3 −1 −1 0 1
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Character tables and tensor products

χ(2) :

(12), (34) →
(

0 1
1 0

)

⇒ χ
(2)
2 = 0, χ

(2)
3 = 2

(234) →
(
ω 0
0 ω2

)

⇒ χ
(2)
4 = −1,

(1234) = (12)(234) →
(

0 ω2

ω 0

)

⇒ χ
(2)
5 = 0
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Character tables and tensor products

3 ⊗ 3 of S4:

3 ⊗ 3 = 1 ⊕ 2 ⊕ 3 ⊕ 3′

1 : e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3

2 :

{

e1 ⊗ e1 + ω2e2 ⊗ e2 + ωe3 ⊗ e3

e1 ⊗ e1 + ωe2 ⊗ e2 + ω2e3 ⊗ e3

3 :







1√
2

(e2 ⊗ e3 + e3 ⊗ e2)
1√
2

(e3 ⊗ e1 + e1 ⊗ e3)
1√
2

(e1 ⊗ e2 + e2 ⊗ e1)

3′ :







1√
2

(e2 ⊗ e3 − e3 ⊗ e2)
1√
2

(e3 ⊗ e1 − e1 ⊗ e3)
1√
2

(e1 ⊗ e2 − e2 ⊗ e1)
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Symmetries in the neutrino mass matrix

For the time being consider only lepton mass terms

Assume diagonal charged-lepton mass matrix

Choose unitary 3 × 3 matrix S

Consider following symmetries in LMaj:

➊ Horizontal symmetry: νL → SνL

➋ Generalized CP symmetry: νL → iSCν∗L
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Symmetries in the neutrino mass matrix

For the time being consider only lepton mass terms

Assume diagonal charged-lepton mass matrix

Choose unitary 3 × 3 matrix S

Consider following symmetries in LMaj:

➊ Horizontal symmetry: νL → SνL

➋ Generalized CP symmetry: νL → iSCν∗L

➊ ⇒ STMνS = Mν

➋ ⇒ STMνS = M∗
ν
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Symmetries in the neutrino mass matrix

For the time being consider only lepton mass terms

Assume diagonal charged-lepton mass matrix

Choose unitary 3 × 3 matrix S

Consider following symmetries in LMaj:

➊ Horizontal symmetry: νL → SνL

➋ Generalized CP symmetry: νL → iSCν∗L

➊ ⇒ STMνS = Mν

➋ ⇒ STMνS = M∗
ν

Mν = U∗m̂U†

➊ ⇒ m̂
(
U†SU

)
=
(
U†SU

)∗
m̂

➋ ⇒ m̂
(
U†SU∗) =

(
U†SU∗)∗ m̂
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Symmetries in the neutrino mass matrix

➊ W ≡
(
U†SU

)
➋ W ≡

(
U†SU∗)

miWij = (Wij)
∗mj (no summation) ⇒ mi |Wij | = |Wij |mj

⇒ Wij = 0 for i 6= j

Assume for simplicity: ms 6= 0

➊ ⇒ U†SU = ǫ̂ or Suj = ǫjuj

➋ ⇒ U†SU∗ = ǫ̂ or Su∗
j = ǫjuj

ǫ̂ = diag (ǫ1, ǫ2, ǫ3) diagonal sign matrix
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Symmetries in the neutrino mass matrix

➊ W ≡
(
U†SU

)
➋ W ≡

(
U†SU∗)

miWij = (Wij)
∗mj (no summation) ⇒ mi |Wij | = |Wij |mj

⇒ Wij = 0 for i 6= j

Assume for simplicity: ms 6= 0

➊ ⇒ U†SU = ǫ̂ or Suj = ǫjuj

➋ ⇒ U†SU∗ = ǫ̂ or Su∗
j = ǫjuj

ǫ̂ = diag (ǫ1, ǫ2, ǫ3) diagonal sign matrix

Choice of class of matrices S : “reflection”
y ∈ C3 with |y1|2 + |y2|2 + |y3|2 = 1

Sy ≡ 1− 2yy† ⇒ Syy = −y, Syy
′ = +y′ for y′⊥y

Consequence for ➊:

Up to a phase factor, one of the uj in U identical with y
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µ–τ -symmetric neutrino mass matrix

y =
1√
2





0
−1
1



 ∼ u3, Sy =





1 0 0
0 0 1
0 1 0





Mν =





x y y

y z w

y w z



 , U =






c12 s12 0

− s12√
2

c12√
2

− 1√
2

− s12√
2

c12√
2

1√
2




 e i β̂

In general, x , y , z ,w ∈ C
6-parameter mass matrix Mν ⇔ m1,2,3, θ12, β1,2

Predictions: θ13 = 0◦, θ23 = 45◦

(CKM phase δ meaningless)
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Trimaximal neutrino mass matrix

y =
1√
3





1
1
1



 ∼ u2, Sy =
1

3





1 −2 −2
−2 1 −2
−2 −2 1





Mν =





r + s u v

u r + v s

v s r + u



 with r , s, u, v ∈ C
7-parameter mass matrix Mν ⇒ 2 predictions

|Ue2|2 = 1/3 ⇒ s2
12 = 1

3(1−s2
13)

≥ 1
3

|Uµ2|2 = 1/3 ⇒ tan 2θ23 =
1−2s2

13

s13 cos δ
√

2−3s2
13
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Tri-bimaximal lepton mixing

Harrison, Perkins, Scott (2002): TBM
Combine bimaximal and trimaximal ⇒

U =





2/
√

6 1/
√

3 0

−1/
√

6 1/
√

3 −1/
√

2

−1/
√

6 1/
√

3 1/
√

2



 e i β̂ ≡ UHPS e i β̂

Bimaximal: x + y = z + w

trimaximal: u = v

5-parameter mass matrix Mν ⇔ m1,2,3, β1,2

Predictions: θ12 = 35.26◦, θ23 = 45◦, θ13 = 0◦

(CKM phase δ meaningless)

Remark: Albright, Rodejohann (2008):
“trimaximal mixing” u1 ≡ (u1)HPS ⇒ s2

12 ≤ 1/3
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CP-invariant neutrino mass matrix

Generalized CP transformation: νL → iSyCν
∗
L

Sy =





1 0 0
0 0 1
0 1 0



⇒ Mν =





a r r∗

r s b

r∗ b s∗



 r , s ∈ C, a, b ∈ R
Consequence for ➋ with above S :

ǫj = 1 ⇒ uj =





cj

dj

d∗
j



 , ǫj = −1 ⇒ uj =





icj

dj

−d∗
j





with cj ∈ R, dj ∈ C
⇒ |Uµj | = |Uτ j | ∀j = 1, 2, 3 Harrison, Scott (2002)
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CP-invariant neutrino mass matrix

5-parameter mass matrix Mν ⇔ m1,2,3, θ12, θ13
Predictions:

r2s∗ 6∈ R ⇒ θ23 = 45◦, e iδ = ±i , e2iβ1,2 = ±1

sin2 2θatm = 4 |Uµ3|2
(
1 − |Uµ3|2

)
= 1 − s4

13

Remark: r2s∗ ∈ R⇔ sin θ13 = 0 →
special case of µ–τ -symmetric Mν
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A 3-parameter neutrino mass matrix

Start with trimaximal mixing: ω ≡ e2πi/3

Mν =





r + s u v

u r + v s

v s r + u





=





x + y + t z + ω2y + ωt z + ωy + ω2t

z + ω2y + ωt x + ωy + ω2t z + y + t

z + ωy + ω2t z + y + t x + ω2y + ωt





Equivalent parameterizations! (r = x − z)

✜ Apply generalized µ–τ CP symmetry ⇒ x , y , z , t ∈ R
✜ Assume t = 0
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A 3-parameter neutrino mass matrix

3-parameter neutrino mass matrix:

Grimus, Lavoura (2008)

Mν =





x + y z + ω2y z + ωy

z + ω2y x + ωy z + y

z + ωy z + y x + ω2y



 , ω = e2πi/3, x , y , z ∈ R
3 parameters in Mν ⇔ ∆m2

atm, ∆m2
⊙, θ13

Predictions:

s23 = 1√
2
, e iδ = ±i , e2iβ1,2 = ±1

s2
12 = 1

3(1−s2
13)

ms +
√

m2
s + ∆m2

atm =

[

(∆m2
atm)

2

3s2
13(2−3s2

13)

]1/4
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A 3-parameter neutrino mass matrix

0.0001 0.001 0.01

|U
e3

|2

0

0.1

0.2

0.3

0.4

0.5

0.6

m
as

se
s i

n 
eV

m
1
+m

2
+m

3  
(inverted)

m
1
+m

2
+m

3  
(normal)

m
min

m1 + m2 + m3 and ms as a function of |Ue3|2
Neutrino mass-squared differences at their mean values
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A 3-parameter neutrino mass matrix

0 0.01 0.02 0.03 0.04 0.05 0.06

|U
e3

|
2

0

0.02

0.04

0.06

0.08

0.10

m
ββ

(e
V

)

Neutrinoless ββ decay: mββ as a function of |Ue3|2
Full lines: normal, dashed-dotted lines: inverted spectrum
Neutrino mass-squared differences at their mean values
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Lagrangians and horizontal symmetries

✜ Horizontal symmetry ≡ family symmetry: Ggauge × Gfamily

(Gfamily could also be gauged)

✜ Kinetic and gauge terms in L invariant under Gfamily

✜ Effect of Gfamily in Yukawa Lagrangian and scalar potential

✜ Yukawa couplings connected with Clebsch–Gordan coefficients
of tensor product of fermion representations

✜ Proliferation of scalar sector (+ additional fermion fields) vs.
predictions for masses and mixings
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Lagrangians and horizontal symmetries

Clebsch–Gordan coefficients vs. Yukawa couplings:

Tensor product: D ⊗ D ′ = DS ⊕ · · · with irreps D, D ′, DS

Bases: D : {eα}, D ′ : {fα}, DS : {bi = Γiαβeα ⊗ fβ}
Transformations:
eα → Dγαeγ , fβ → Dδαfδ, bi → (DS)jibj

Conditions on coefficient matrices Γi :

Γi =
(

D†ΓjD
′∗
)

(DS )ji

Generic Yukawa couplings: C = charge conjugation matrix

LY = yψT
α C−1γiαβSiψ

′
β + H.c.

ψ → Dψ, D ′ → D ′ψ′ ⇒ S → D∗
SS , γi = Γ∗i

Yukawa couplings partially determined by Clebsch–Gordan
coefficients! ⇒ reduction of number of parameters
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Lagrangians and horizontal symmetries

Family symmetry groups in the Lagrangian:

♦ Can a symmetry in Mν be a remnant of a symmetry of a
complete model of the lepton sector?

♦ What are the symmetries and multiplets of such a complete
model?

♦ How can one achieve a charged-lepton mass matrix with
freedom for adjusting me,µ,τ?

Fermion families 3-dimensional representations of
horizontal group G :

➊ Abelian: all fermion multiplets in 1 ⊕ 1′ ⊕ 1′′

➋ non-Abelian: 1 ⊕ 2 occurs

➌ non-Abelian: 3 occurs
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Lagrangians and horizontal symmetries

Abelian group G :

Synonymous with “texture zeros” ⇒
relations among observables
Grimus, Joshipura, Lavoura, Tanimoto (2004):
It is possible to enforce texture zeros in arbitrary entries of the
fermion mass matrices by means of Abelian symmetries and an
extended scalar sector
C. Low (2004):
Extremal mixing angles: only θ13 = 0◦ can be enforced by Abelian
symmetries
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Lagrangians and horizontal symmetries

Non-Abelian symmetries:

1 ⊕ 2: G = Dn with n ≥ 3 (D3
∼= S3

∼= ∆(6)), O(2),
double-valued groups D ′

n with n ≥ 2 (D ′
2
∼= Q8)

Possible to enforce θ13 = 0◦ and θ23 = 45◦

Groups with 3-dim irreps: A4, S4, A5

double-valued groups A′
4 ≡ T ′, S ′

4,
dihedral-like groups ∆(27), ∆(54)
Lie groups SO(3), SU(3)

❇ Relations among entries of mass matrices ⇒
non-Abelian groups

❇ Clebsch–Gordan coefficients ⇒ Yukawa couplings

❇ Avoiding extra Goldstone or gauge bosons from breaking of G

⇒ finite groups

❇ Extended scalar sector ⇒ problem of VEV alignment
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Seesaw mechanism

Minkowski (1977)
Yanagida; Glashow; Gell-Mann, Ramond, Slansky (1979)
SM + 3 νR + total lepton number violation
Remark: could also choose 2 or more than 3 νR

L = · · · −∑j

[

ℓ̄Rφ
†
j Γj + ν̄R φ̃

†
j ∆j

]

DL + H.c.

+
(

1
2 ν

T
R C−1M∗

RνR + h.c.
)

MR = MT
R

Mℓ =
1√
2

∑

j

v∗
j Γj , MD =

1√
2

∑

j

vj∆j

Total Majorana mass matrix for left-handed ν fields:

MD+M =

(
0 MT

D

MD MR

)

for

(
νL

C (ν̄R)T

)
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Seesaw mechanism

Assumption: mD ≪ mR (mD,R scales of MD,R)
mD ∼ me,µ,τ , mZ ?

Seesaw mechanism:

Mass matrix of light neutrinos: Mν = −MT
D M−1

R MD

✜ mν ∼ m2
D/mR ✜

Mass matrix of heavy neutrinos: Mheavy
ν = MR

Diagonalization: (Uℓ
R)†MℓU

ℓ
L = m̂ℓ, UT

ν MνUν = m̂

Mixing matrix: U = (Uℓ
L)

†Uν
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A model for bimaximal mixing

Grimus, Lavoura (2001, 2002)
Consider following framework:

SM + nH φ + 3 νR + soft Le,µ,τ breaking
Soft Lα breaking by νR mass term

Features of this framework:

Seesaw mechanism

Yukawa coupling matrices diagonal ⇒ Mℓ, MD diagonal

Soft breaking of lepton numbers at high scale

MR only source of ν mixing

νR mass term has dim 3 ⇒ soft Le,µ,τ breaking
⇒ renormalizable models
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A model for bimaximal mixing

Note: MD , MR µ–τ symmetric ⇔ Mν µ–τ , i.e. invariant under
νµL ↔ ντL ⇔

Mν =





x y y

y z w

y w z





Mℓ diagonal ⇒ U =






cos θ sin θ 0

− sin θ√
2

cos θ√
2

− 1√
2

− sin θ√
2

cos θ√
2

1√
2






θ ≡ θ12 in general large but non-maximal, θ23 maximal, Ue3 = 0
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A model for bimaximal mixing

Realization of bimaximal mixing in soft-L-breaking framework:
SM with 3φ + 3 νR + non-abelian horizontal symmetry group

GH ⇐







U(1)Le
× U(1)Lµ × U(1)Lτ

︸ ︷︷ ︸

softly broken

, Z2 × Z′
2

︸ ︷︷ ︸

spont. breaking





Z2 :

{
DµL ↔ DτL, νµR ↔ ντR , µR ↔ τR ,
φ3 → −φ3Z′

2 : eR → −eR , νe,µ,τR → −νe,µ,τR , φ1 → −φ1

Non-abelian “kernel” of this group is O(2), could be replaced by
Dn with n ≥ 3
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A model for bimaximal mixing

LY = −y1D̄eLνeR φ̃1 − y2

(
D̄µLνµR + D̄τLντR

)
φ̃1

−y3D̄eLeRφ1 − y4

(
D̄µLµR + D̄τLτR

)
φ2

−y5

(
D̄µLµR − D̄τLτR

)
φ3 + H.c.

mµ = |y4v2 + y5v3| , mτ = |y4v2 − y5v3|

LMaj =
1

2
ν−1
R M∗

RC ν̄R + H.c.

Finetuning problem: mµ ≪ mτ
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A model for bimaximal mixing

How the model functions:

→֒ µ–τ symmetry Z2 ⇒ MDµµ = MDττ , MR , Mν µ–τ symmetric

→֒ Mℓ diagonal because of lepton numbers

→֒ Auxiliary symmetry Z′
2 ⇒ φ2,3 do not couple to D̄LνR

→֒ Z2 spontanously broken VEV of φ3 ⇒ mµ 6= mτ

→֒ ∆m2
⊙/∆m2

atm ∼ 1/30 reproduced by by tuning

Non-decoupling in the scalar sector (neutral scalar vertices) for
mR → ∞ ⇒
⊲ Amplitudes of µ→ eγ, Z → e−µ+, . . . ∝ 1/m2

R

⊲ Amplitude of, e.g., µ→ 3e constant, suppressed by product
of 4 Yukawa couplings, within exp. reach?
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A type I seesaw model with A4

A4 is smallest finite group (12 elements) with 3-dim irrep
Ma, Rajasekaran (2001) for lepton sector
(in quark sector Wyler (1979), Branco, Nilles, Rittenberg (1980))
Generators of 3:

A =





1 0 0
0 −1 0
0 0 −1



 , E =





0 1 0
0 0 1
1 0 0



 ,

1′ : E → ω2, A → 1, 1′′ : E → ω, A → 1 (ω = e2πi/3)

3 ⊗ 3 = 1 ⊕ 1′ ⊕ 1′′ ⊕ 3 ⊕ 3

1 : e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3

1′ : e1 ⊗ e1 + ω2e2 ⊗ e2 + ωe3 ⊗ e3

1′′ : e1 ⊗ e1 + ωe2 ⊗ e2 + ω2e3 ⊗ e3

3 : e2 ⊗ e3, e3 ⊗ e1, e1 ⊗ e2;

e3 ⊗ e2, e1 ⊗ e3, e2 ⊗ e1
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A type I seesaw model with A4

He, Keum, Volkas (2005)

fermion fields: ℓR ∈ 1 ⊕ 1′ ⊕ 1′′, DL, νR ∈ 3

scalar fields: doublets φ ∈ 3, φ0 ∈ 1, real singlets χ ∈ 3

LY = · · · −
[
h1

(
D̄1Lφ1 + D̄2Lφ2 + D̄3Lφ3

)
ℓ1R

+ h2

(
D̄1Lφ1 + ωD̄2Lφ2 + ω2D̄3Lφ3

)
ℓ2R

+ h3

(
D̄1Lφ1 + ω2D̄2Lφ2 + ωD̄3Lφ3

)
ℓ3R

+ h0

(
D̄1Lν1R + D̄2Lν2R + D̄3Lν3R

)
φ̃0 + H.c.

]

+
1

2

[

M
(

νT
1RC−1ν1R + νT

2RC−1ν2R + νT
3RC−1ν3R

)

+ H.c.
]

+
1

2

[

hχ

(

χ1

(

νT
2RC−1ν3R + νT

3RC−1ν2R

)

+ χ2

(

νT
3RC−1ν1R + νT

1RC−1ν3R

)

+ χ3

(

νT
1RC−1ν2R + νT

3RC−1ν1R

))

+ H.c.
]
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A type I seesaw model with A4

Mass matrices: MD = h0v01,

Mℓ =





h1v
∗
1 h1v

∗
2 h1v

∗
3

h2v
∗
1 h2v

∗
2ω

2 h2v
∗
3ω

h3v
∗
1 h3v

∗
2ω h3v

∗
3ω

2



 , MR =





M hχw3 hχw2

hχw3 M hχw1

hχw2 hχw1 M





Vacuum alignment:

v1 = v2 = v3 ≡ v ⇒ Mℓ =
√

3v





h1 0 0
0 h2 0
0 0 h3



U†
ω

w1 = w3 = 0, hχw2 ≡ M ′ ⇒ MR =





M 0 M ′

0 M 0
M ′ 0 M
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A type I seesaw model with A4

Uℓ
L ≡ Uω =

1√
3





1 1 1
1 ω ω2

1 ω2 ω



 , Uν =





1/
√

2 0 −1/
√

2
0 1 0

1/
√

2 0 1/
√

2





U = (Uℓ
L)

†Uν = U†
ωUν = diag (1, ω2, ω)UHPS diag (1, 1, i)

Comments:

Tri-bimaximal mixing for the vacuum alignment shown on
previous slide

Vacuum alignment: possible if scalar potential is
CP-conserving

ℓR not in the same A4 multiplet as DL, νR ⇒
cannot be embedded into a GUT
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Some comments on A4 models

Model with DL, ℓR ∈ 3, type II seesaw:

Altarelli, Fergulio (2005), Ma (2006)
Scalar sector:
gauge doublets (φ0, φ1, φ2, φ3) ∈ 1 ⊕ 3

gauge triplets (ξ0, ξ1, ξ2, ξ3) ∈ 1 ⊕ 3

Mℓ =





h0v0 h1v3 h2v2

h2v3 h0v0 h1v1

h1v2 h2v1 h0v0





Mν =





a d c

d a b

c b a





〈φ0
j 〉 ≡ vj , 〈ξ0k〉 ∝ a, . . . , d

VEV alignment for TBM: v1 = v2 = v3, c = d = 0
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Some comments on A4 models

Uℓ ≡ Uω =
1√
3





1 1 1
1 ω ω2

1 ω2 ω



 with U
†
ℓ MℓUℓ diagonal

me = |h0v0 + (h1 + h2)v |
mµ = |h0v0 + (h1ω + h2ω

2)v |
mτ = |h0v0 + (h1ω

2 + h2ω)v |

Uν =
1√
2





0
√

2 0
1 0 −1
1 0 1





U
†
ℓ Uν = UHPS diag (1, 1,−i)
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Some comments on A4 models

Remarks:

■ VEV alignment and parameter finetuning
Altarelli, Feruglio, Hagedorn, . . .
non-renormalizable terms, SUSY (new physics at TeV scale),
extra dimensions, . . .

■ Breaking of family group G to different subgroups in charged
lepton and neutrino sectors ⇒ TBM
Blum, Hagedorn, Lindner; Altarelli, Feruglio; . . .
Charged lepton sector: A4 → Z3(E ) (cyclic permutations)
Neutrino sector: A4 → Z2(A),
additional Z2 through 2 ↔ 3 symmetry

■ Is S4 the symmetry group for TBM? (Lam (2008))
Statement: S4 ⊆ G
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Trimaximal mixing with 4 right-handed neutrino singlets

Construction of seesaw models with more than three νR

Grimus, Lavoura (2008)

❒ Use more than three νR (4 or 5) for model building

❒ Enforce diagonal charged-lepton mass matrix

❒ Discussion of two cases:

❶ Trimaximal mixing in Mν with 3 parameters (four νR)
❷ TBM mixing (five νR)
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Trimaximal mixing with 4 right-handed neutrino singlets

Charged-lepton sector:

Fermionic gauge multiplets:
doublets DαL, singlets αR and ναR (α = e, µ, τ)

Family lepton number symmetries ULα

⇒ fermion bilinears D̄αLαR

Simplest way to achieve different masses me,µ,τ :
introduce Higgs doublet φα for each flavour

y1

∑

α=e,µ,τ

D̄αLαRφα ⇒ mα = |y1vα|

Different charged-lepton masses by different VEVs!
Further symmetries of Yukawa couplings:

Flavour permutation symmetry S3

“Higgs doublet numbers” zα : αR → −αR , φα → −φα
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Trimaximal mixing with 4 right-handed neutrino singlets

Yukawa couplings of neutrino singlets:

Add Higgs doublet φ0 → flavour singlet
Lepton family symmetries + permutation symmetry S3:

y2

∑

α=e,µ,τ

D̄αLναR φ̃0 with φ̃0 = iτ2φ
∗
0

Breaking of family symmetries:

In νR mass term ⇒ soft breaking by dimension 3
S3-invariant mass term:

1

2
M∗

0

∑

α

νT
αRC−1ναR +

M∗
1

(

νT
eRC−1νµR + νT

µRC−1ντR + νT
τRC−1νeR

)
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Trimaximal mixing with 4 right-handed neutrino singlets

Seesaw mechanism:

Lν mass =
(
−ν̄RMDνL + 1

2ν
T
R C−1MRνR

)
+ H.c.

= 1
2 ω

T
L C−1MD+M ωL + H.c.

MD+M =

(
0 MT

D

MD MR

)

with ωL =

(
νL

C (ν̄R)T

)

Mass matrix of light neutrinos: Mν = −MT
D M−1

R MD

Application to model construction:

MR =





M0 M1 M1

M1 M0 M1

M1 M1 M0



, MD ∝ 13 ⇒
{

U = UHPS fine!
m1 = m3 failure!
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Trimaximal mixing with 4 right-handed neutrino singlets

Addition of one right-handed neutrino singlet:

✜ Reduce S3 to cyclic permutations (1, C, C2)

✜ Additional νR singlet: C : ν0R → ων0R

✜ Complex scalar singlet: C : χ→ ωχ
[
1

2
yχ ν

T
0RC−1ν0R χ+

1

2
M∗

2

(

νT
eR + ω νT

µR + ω2 νT
τR

)

C−1ν0R

]

+H.c.
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Trimaximal mixing with 4 right-handed neutrino singlets

MN ≡ yχ v∗
χ, a ≡ y∗

2 v0

MR =







M0 M1 M1 M2

M1 M0 M1 ω2 M2

M1 M1 M0 ωM2

M2 ω2 M2 ωM2 MN







MD =







a 0 0
0 a 0
0 0 a

0 0 0






,

Seesaw formula ⇒

Mν =





x + y z + ω2y z + ωy

z + ω2y x + ωy z + y

z + ωy z + y x + ω2y
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Trimaximal mixing with 4 right-handed neutrino singlets

x = −a2 M0 + M1

(M0 − M1) (M0 + 2M1)

z = a2 M1

(M0 − M1) (M0 + 2M1)

y = −a2 M2
2

MN (M0 − M1)
2

Seesaw mechanism: M0,1,2,N of large seesaw scale
⇒ vχ of seesaw scale
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Trimaximal mixing with 4 right-handed neutrino singlets

Addition of generalized CP symmetry:

Sy =





1 0 0
0 0 1
0 1 0





DL → iSyCD∗
L , ℓR → iSyCℓ

∗
R , νR → iSyCν

∗
R , ν0R → iCν∗0R

φ→ Syφ
∗, φ0 → φ∗0, χ→ χ∗

CP transformation ⇒ y1, y2, yχ,M0,M1,M2 ∈ R
Trivial condition on scalar potential: vχ real ⇒ MN ∈ R
⇒ x , y , z ∈ R ⇒Mν trimaximal 3-parameter mass matrix
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Trimaximal mixing with 4 right-handed neutrino singlets

Symmetry breaking summary:

dim of terms in L conserved symmetries

dim 4 CP, zα, C, ULα

dim 3 CP, zα, C
dim 2 CP

Remarks:
Eventually, all symmetries are broken spontaneously.
Spontaneous CP breaking ⇔ mµ 6= mτ
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Trimaximal mixing with 4 right-handed neutrino singlets

Model summary:

❈ Extension of the SM with 4 νR , 4 Higgs doublets,
one scalar singlet

❈ Minimal number of Yukawa couplings

❈ me : mµ : mτ = |ve | : |vµ| : |vτ |
❈ Lepton mixing solely from νR mass matrix MR

❈ Chain of soft symmetry breaking

G = [(U(1) × U(1) × U(1)) × (Z2 × Z2 × Z2)] ⋊ Z3
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TBM with 5 right-handed neutrino singlets

Two additional neutrino singlets:

✜ Modification of previous model: Addition of
neutrino singlets ν1R , ν2R and complex scalar singlet χ

✜ Keep full S3 in terms of dim 4 and 3 in L:

✦ C : ν1R → ων1R , ν2R → ω2ν2R , χ→ ωχ
✦ Iµτ : ν1R ↔ ν2R , χ↔ χ∗

✜ Iµτ spontaneously broken with real VEV vχ

(trivial condition in the scalar potential)

Note:

2-dim irrep

(
χ
χ∗

)

of S3
∼= D3 :

(
ω 0
0 ω2

)

,

(
0 1
1 0

)
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TBM with 5 right-handed neutrino singlets

L =· · · + 1

2
y3

(

χνT
1RC−1ν1R + χ∗ νT

2RC−1ν2R

)

+M∗
2

[

νT
1RC−1

(
νeR + ωνµR + ω2ντR

)

+νT
2RC−1

(
νeR + ω2νµR + ωντR

)]

+M∗
4ν

T
1RC−1ν2R + · · ·

MR =









M0 M1 M1 M2 M2

M1 M0 M1 ω2M2 ωM2

M1 M1 M0 ωM2 ω2M2

M2 ω2M2 ωM2 MN M4

M2 ωM2 ω2M2 M4 M ′
N









, MD =

(
a13×3

02×3

)

with MN ≡ y∗
3 v∗

χ, M ′
N ≡ y∗

3 vχ
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Seesaw mechanism: Mν = −MT
D M−1

R MD ⇒

Mν =





x + y + t z + ω2y + ωt z + ωy + ω2t

z + ω2y + ωt x + ωy + ω2t z + y + t

z + ωy + ω2t z + y + t x + ω2y + ωt





y/t = vχ/v
∗
χ ⇒ [vχ real ⇔ y = t] and

Mν =





x + 2y z − y z − y

z − y x − y z + 2y
z − y z + 2y x − y



 ⇒ TBM

G = [(U(1) × U(1) × U(1)) × (Z2 × Z2 × Z2)] ⋊ S3
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Conclusions

➤ Symmetries based on finite groups could be a way to tackle
the mass and mixing problem.

➤ Models for lepton mixing (and neutrino masses?) require
complicated/contrived extensions of SM

➤ Such models are in most cases incompatible with Grand
Unification

➤ A route for such models, avoiding vacuum alignment, SUSY,
non-renormalizable terms, . . . , could be an enlarged νR sector
(plus extended scalar sector)

➤ For the time being, bimaximal and tri-bimaximal mixing are
compatible with all experimental results.
However, if s2

13 ∼ 0.01, then alternative ideas are needed.
Or a degenerate ν-mass spectrum ⇒ s2

13 6= 0 by RGE from
high (seesaw) scale to ew. scale.
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