Theory of Neutrino Masses and Mixing

Walter Grimus (University of Vienna)

IV International Pontecorvo Neutrino Physics School September 26 – October 6, 2010, Alushta, Crimea

Introduction

- Motivation
- Neutrino mass terms and parameter counting
- 2 Theory of finite groups
 - Basics
 - Theorems on finite groups
 - S Examples of finite groups
 - One of the second se
 - S Examples of character tables and tensor products
 - 6 Lagrangians and horizontal symmetries
- Neutrino mass matrices
 - Symmetries in the neutrino mass matrix
 - **2** μ -au-symmetric neutrino mass matrix
 - Trimaximal lepton mixing
 - Tri-bimaximal lepton mixing
 - A 3-parameter neutrino mass matrix
 - A CP-invariant mass matrix

Models of neutrino masses and lepton mixing

- Seesaw mechanism
- A model for bimaximal mixing
- 3 A type I seesaw model with A_4
- **③** Some comments on A_4 models
- Trimaximal mixing with four right-handed neutrino singlets
- **③** Tri-bimaximal mixing with five right-handed neutrinos singlets

Conclusions

Introduction

- O Theory of finite groups
- Neutrino mass matrices
- Models of neutrino masses and lepton mixing
- Conclusions

Motivation for horizontal symmetries: Gatto, Sartori, Tonin; Cabibbo, Maiani (1968):

$$\sin\theta_c \simeq \sqrt{\frac{m_d}{m_s}}$$

Harrison, Perkins, Scott (2002):

$$U \simeq \begin{pmatrix} 2/\sqrt{6} & 1/\sqrt{3} & 0\\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2}\\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix} e^{i\hat{\beta}} \equiv U_{\rm HPS} \, e^{i\hat{\beta}}$$

Mass spectra of charged fermions (up quarks, down quarks, charged leptons) strongly hierarchical! Mixing angles = functions of quark mass ratios? Mass spectrum of neutrinos: either completely different or hierarchy not so pronounced Mixing angles "pure numbers"? Neutrino mass spectrum non-degenerate:

Hierarchical spectrum: normal with $m_1 \rightarrow 0$ $\Delta m_{\rm atm}^2 / \Delta m_{\odot}^2 \sim 30 \Rightarrow m_3 / m_2 \simeq \sqrt{\Delta m_{\rm atm}^2 / \Delta m_{\odot}^2} \sim 5 \div 6$ Inverted hierarchy: inverted with $m_3 \rightarrow 0$ Smallest ν mass m_s : $m_s = m_1$ for normal, $m_s = m_3$ for inverted

Assumptions:

- 🗖 Majorana neutrinos
- Charged-lepton mass matrix diagonal (for the purpose of parameter counting)

Majorana neutrino mass term:

$$\mathcal{L}_{\mathrm{Maj}} = \frac{1}{2} \nu_L^T C^{-1} \mathcal{M}_\nu \nu_L + \mathrm{H.c.}$$

 \mathcal{M}_{ν} complex, symmetric!

Assumptions:

- Majorana neutrinos
- Charged-lepton mass matrix diagonal (for the purpose of parameter counting)

Majorana neutrino mass term:

$$\mathcal{L}_{\mathrm{Maj}} = \frac{1}{2} \nu_L^T C^{-1} \mathcal{M}_\nu \nu_L + \mathrm{H.c.}$$

 \mathcal{M}_{ν} complex, symmetric!

Theorem (Schur)

 $\mathcal{M}_{\nu}^{T} = \mathcal{M}_{\nu} \Rightarrow \exists \text{ unitary matrix } U \text{ with} U^{T} \mathcal{M}_{\nu} U = diag(m_{1}, m_{2}, m_{3}) \text{ with } m_{j} \ge 0$

PMNS or lepton mixing matrix U (modulo phase multiplications from the left)

Neutrino mass terms and parameter counting

Parameterization of the mixing matrix:

$$U = e^{i\hat{\alpha}} U_{23} U_{13} U_{12} \operatorname{diag} \left(1, e^{i\beta_1}, e^{i\beta_2} \right)$$

with $e^{i\hat{\alpha}} = \text{diag} (e^{i\alpha_1}, e^{i\alpha_2}, e^{i\alpha_3})$ $e^{i\hat{\alpha}}$ are unphysical phases in charged current interaction (can be absorbed into the charged lepton fields)

$$U_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}$$
$$U_{13} = \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix}$$
$$U_{12} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$U_{23}U_{13}U_{12} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Conventions:

CKM-type phase δ , Majorana phases β_1 , β_2

Parameter counting:

9 physical parameters: 3 masses, 3 angles, 3 phases

Physical parameters in \mathcal{M}_{ν} :

 $6\times 2=12$ real parameters in \mathcal{M}_ν

first line and column can be made real by phase transformation \Rightarrow 9 real physical parameters in \mathcal{M}_{ν}

Discrete physical parameter:

sign $(m_3^2 - m_1^2) \Rightarrow$ normal vs. inverted mass spectrum

Diagonalization of the neutrino mass matrix:

$$U^{T} \mathcal{M}_{\nu} U = \text{diag} (m_{1}, m_{2}, m_{3}) \equiv \hat{m} \Rightarrow \mathcal{M}_{\nu} U = U^{*} \hat{m}$$
$$U = (u_{1}, u_{2}, u_{3}) \Rightarrow \mathcal{M}_{\nu} u_{j} = m_{j} u_{j}^{*}$$

Diagonalization of the neutrino mass matrix:

$$U^{T}\mathcal{M}_{\nu}U = \operatorname{diag}(m_{1}, m_{2}, m_{3}) \equiv \hat{m} \Rightarrow \mathcal{M}_{\nu}U = U^{*}\hat{m}$$
$$U = (u_{1}, u_{2}, u_{3}) \Rightarrow \mathcal{M}_{\nu}u_{j} = m_{j}u_{j}^{*}$$

Note:

- In general, u_j is not an eigenvector of \mathcal{M}_{ν} , only for real u_j .
- If λ is an eigenvalue of $\mathcal{M}_{\nu},$ then $|\lambda|$ is in general NOT a neutrino mass.

• However,
$$\mathcal{M}_{
u}^{\dagger}\mathcal{M}_{
u}u_{j}=m_{j}^{2}u_{j}.$$

- Introduction
- **②** Theory of finite groups
- Neutrino mass matrices
- Models of neutrino masses and lepton mixing
- Conclusions

Definition of a group G:

G is a set with a multiplication rule

O Closure:

- $g_1\in {\it G},\,g_2\in {\it G}\Rightarrow g_1g_2\in {\it G}$
- Associativity:

 $(g_1g_2)g_3 = g_1(g_2g_3)$

② Unit element:

It exists $e \in G$ such that $eg = g \ \forall g \in G$.

Inverse element:

 $\forall g \in G \text{ it exists } g^{-1} \in G \text{ such that } g^{-1}g = e.$

Definition of a group G:

G is a set with a multiplication rule

O Closure:

- $g_1\in {\sf G}$, $g_2\in {\sf G}\Rightarrow g_1g_2\in {\sf G}$
- Associativity:

 $(g_1g_2)g_3 = g_1(g_2g_3)$

② Unit element:

It exists $e \in G$ such that $eg = g \ \forall g \in G$.

Inverse element:

 $\forall g \in G \text{ it exists } g^{-1} \in G \text{ such that } g^{-1}g = e.$

Remarks:

- left inverse = right inverse, left unit element = right unit element, inverse and unit element are unique
- associativity always fulfilled for mappings (permutations, matrices, ...)

Group representations:

- \triangleright Vector space $\mathcal V$ over $\mathbb C$
- \triangleright $L(\mathcal{V}) =$ set of linear operators on \mathcal{V}
- $\triangleright \quad D: \ G
 ightarrow L(\mathcal{V})$ such that $D(g_1g_2) = D(g_1)D(g_2)$
- \triangleright D(e) = 1

→ < ∃ →</p>

Group representations:

- \triangleright Vector space $\mathcal V$ over $\mathbb C$
- \triangleright $L(\mathcal{V}) =$ set of linear operators on \mathcal{V}
- $\triangleright \quad D: \ G
 ightarrow L(\mathcal{V})$ such that $D(g_1g_2) = D(g_1)D(g_2)$

$$\triangleright$$
 $D(e) = 1$

Unitary representation:

 ${\mathcal V}$ with scalar product $\langle x|y
angle$ and $\langle D(g)x|D(g)y
angle=\langle x|y
angle$ orall g

伺 と く ヨ と く ヨ と

Group representations:

 \triangleright Vector space $\mathcal V$ over $\mathbb C$

$$\triangleright$$
 $L(\mathcal{V}) =$ set of linear operators on \mathcal{V}

 $\triangleright \quad D: \ G
ightarrow L(\mathcal{V})$ such that $D(g_1g_2) = D(g_1)D(g_2)$

$$\triangleright$$
 $D(e) = 1$

Unitary representation:

 ${\mathcal V}$ with scalar product $\langle x|y
angle$ and $\langle D(g)x|D(g)y
angle=\langle x|y
angle$ orall g

Irreducible representation: "irrep"

 $\mathcal V$ does *not* have any non-trivial subspace $\mathcal W$ such that $D(g)\mathcal W = \mathcal W \ \forall \ g$

・ 同 ト ・ ヨ ト ・ ヨ ト

Unitary representations can be decomposed into irreps! Irreps are the smallest building blocks of representations

$$D(g)
ightarrow egin{pmatrix} D_1(g) & 0 & 0 & \cdots \ 0 & D_2(g) & 0 & \cdots \ 0 & 0 & D_3(g) & \cdots \ dots & dots & dots & dots & dots \end{pmatrix} \ dots & dots & dots & dots & dots \end{pmatrix}$$

Definition: $H \subseteq G$ is a normal subgroup if $gHg^{-1} = H \ \forall g \in G$

回 と く ヨ と く ヨ と

æ

Definition: $H \subseteq G$ is a normal subgroup if $gHg^{-1} = H \ \forall g \in G$ **Definition:** H normal subgroup of G, then the factor group G/H consists of the cosets $\{H, Hg_1, Hg_2 \dots\}$ with the multiplication rule $(H \ g) \ (Hg') = Hgg'$

→ Ξ →

Definition: $H \subseteq G$ is a normal subgroup if $gHg^{-1} = H \ \forall g \in G$ **Definition:** H normal subgroup of G, then the factor group G/H consists of the cosets $\{H, Hg_1, Hg_2 \dots\}$ with the multiplication rule $(H \ g) \ (Hg') = Hgg'$

Definition: g_1 is conjugate to g_2 if $\exists g \in G$ such that $gg_1g^{-1} = g_2$

Definition: $H \subseteq G$ is a normal subgroup if $gHg^{-1} = H \ \forall g \in G$ **Definition:** H normal subgroup of G, then the factor group G/H consists of the cosets $\{H, Hg_1, Hg_2 \dots\}$ with the multiplication rule $(H \ g) \ (Hg') = Hgg'$ **Definition:** g_1 is conjugate to g_2 if $\exists g \in G$ such that $gg_1g^{-1} = g_2$

Definition: " g_1 conjugate to g_2 " defines an equivalence relation \Rightarrow the sets of equivalent elements are called conjugacy classes.

Definition: $H \subseteq G$ is a normal subgroup if $gHg^{-1} = H \ \forall g \in G$ **Definition:** H normal subgroup of G, then the factor group G/H consists of the cosets $\{H, Hg_1, Hg_2 \dots\}$ with the multiplication rule (H g) (Hg') = Hgg'

Definition: g_1 is conjugate to g_2 if $\exists g \in G$ such that $gg_1g^{-1} = g_2$ **Definition:** " g_1 conjugate to g_2 " defines an equivalence relation

 \Rightarrow the sets of equivalent elements are called conjugacy classes.

Remarks:

 $\{e\}$ is a class.

A normal subgroup consists of complete conjugacy classes of G. Let H be a proper normal subgroup of $G \Rightarrow$

- The mapping $f : g \in G \rightarrow Hg \in G/H$ is a homomorphism, i.e., f(g)f(g') = f(gg').
- Any representation D of G/H induces naturally a representation \overline{D} of G via $\overline{D}(g) \equiv D(Hg)$.

Direct product: $G \times G'$ with multiplication law $(g_1, g'_1)(g_1, g'_1) = (g_1g'_1, g_2g'_2)$ E.g. $S_3 \times \mathbb{Z}_2$

Semidirect product: $H \rtimes_{\phi} G$

G acts on H via the homomorphism $\phi : G \rightarrow Aut(H)$ Multiplication law: $(h_1, g_1)(h_2, g_2) = (h_1 \phi(g_1)h_2, g_1g_2)$ **Direct product:** $G \times G'$ with multiplication law $(g_1, g'_1)(g_1, g'_1) = (g_1g'_1, g_2g'_2)$ E.g. $S_3 \times \mathbb{Z}_2$

Semidirect product: $H \rtimes_{\phi} G$

G acts on *H* via the homomorphism $\phi : G \to \operatorname{Aut}(H)$ Multiplication law: $(h_1, g_1)(h_2, g_2) = (h_1 \phi(g_1)h_2, g_1g_2)$ Remarks: If $\phi = \operatorname{id} \Rightarrow H \rtimes_{\phi} G \equiv H \times G$ Useful question for model building: Can a group be decomposed into a semidirect product?

Semidirect products are ubiquitous!

Theorem

Group S, H proper normal subgroup of S, G subgroup of S with following properties:

- $\bullet \ H \cap G = \{e\},$
- every element $s \in S$ can be written as s = hg with $h \in H$, $g \in G$.

Then the following holds:

- $S \cong H \rtimes_{\phi} G$ with $\phi(g)h = ghg^{-1}$,
- decomposition s = hg is unique,
- $S/H \cong G$.

$$s_1s_2 = (h_1g_1)(h_2g_2) = (h_1g_1h_2g_1^{-1})(g_1g_2)$$

-∢ ≣ ▶

Symmetries in the Lagrangian vs. symmetry groups: Multiplet of (fermion) fields $\psi_1, \ldots \psi_r$

$$\mathcal{L} = i \sum_{j=1}^{r} \bar{\psi}_j \gamma^{\mu} \partial_{\mu} \psi_j + \cdots$$

Symmetries $\psi_j
ightarrow A^{(p)}_{jk} \psi_k$ $(p=1,\ldots,N_{
m gen})$ of ${\cal L}$

 $A^{(p)}$ $(p = 1, ..., N_{gen})$ unitary matrices!

Symmetries in the Lagrangian vs. symmetry groups: Multiplet of (fermion) fields $\psi_1, \ldots \psi_r$

$$\mathcal{L} = i \sum_{j=1}^{r} \bar{\psi}_j \gamma^{\mu} \partial_{\mu} \psi_j + \cdots$$

Symmetries $\psi_j \to A_{jk}^{(p)} \psi_k$ $(p = 1, \dots, N_{gen})$ of \mathcal{L}

 $A^{(p)}$ $(p = 1, \dots, N_{\text{gen}})$ unitary matrices!

Two approaches to symmetries and Lagrangians:

- □ \mathcal{L} ⇒ imposing symmetries $A^{(p)}$ on \mathcal{L} ⇒ the $A^{(p)}$ represent generators of a group G ⇒ representation of G ⇒ G
- $\square Group G \Rightarrow representations \Rightarrow multiplets of fields \Rightarrow \mathcal{L}$

同 ト イヨ ト イヨ ト 二 ヨ

Infinite vs. finite groups

Infinite groups: number of elements is infinite

- Infinitely many inequivalent irreps
- Non-compact simple Lie groups G possess no finite-dimensional unitary irreps apart from the trivial reps g → 1 ∀g ∈ G

Infinite vs. finite groups

Infinite groups: number of elements is infinite

- Infinitely many inequivalent irreps
- Non-compact simple Lie groups G possess no finite-dimensional unitary irreps apart from the trivial reps g → 1 ∀g ∈ G

Finite groups:

- Finite number of inequivalent irreps
- All irreps can be considered unitary
- Since ord G is finite, all numbers concerning properties of the group and its irreps are finite as well ⇒ extremely useful relations (totally lacking in infinite groups)

Infinite vs. finite groups

Infinite groups: number of elements is infinite

- Infinitely many inequivalent irreps
- Non-compact simple Lie groups G possess no finite-dimensional unitary irreps apart from the trivial reps g → 1 ∀g ∈ G

Finite groups:

- Finite number of inequivalent irreps
- All irreps can be considered unitary
- Since ord G is finite, all numbers concerning properties of the group and its irreps are finite as well ⇒ extremely useful relations (totally lacking in infinite groups)

Remarks:

ord $G\equiv \#$ elements of GIrreps of $U(1): e^{ilpha} o e^{inlpha}$ with $n\in\mathbb{Z}$

Theorems on finite groups

Subgroups:

Theorem (Lagrange)

H subgroups of $G \Rightarrow ord H$ is a divisor of ord G

- ∢ ≣ →

Theorems on finite groups

Subgroups:

Theorem (Lagrange)

H subgroups of $G \Rightarrow \text{ord } H$ is a divisor of ord G

Proof: $g_1, g_2 \in G$, consider the sets Hg_1 and Hg_2 . Suppose $Hg_1 \cap Hg_2$ is not empty $\Rightarrow \exists g \in Hg_1 \cap Hg_2$ $\Rightarrow g = hg_1 = h'g_2$ with $h, h' \in H$ and $g_2 = h'^{-1}hg_1$ $\Rightarrow Hg_1 = Hg_2$. Consequently, either $Hg_1 = Hg_2$ or $Hg_1 \cap Hg_2 = \emptyset \Rightarrow$ G can be written as $G = H \cup Hg_1 \cup \cdots Hg_{n-1}$ with empty intersections $\Rightarrow \operatorname{ord} G/\operatorname{ord} H = n$ Q.E.D.

伺 と く ヨ と く ヨ と

Subgroups:

Theorem (Lagrange)

H subgroups of $G \Rightarrow ord H$ is a divisor of ordG

Proof: $g_1, g_2 \in G$, consider the sets Hg_1 and Hg_2 . Suppose $Hg_1 \cap Hg_2$ is not empty $\Rightarrow \exists g \in Hg_1 \cap Hg_2$ $\Rightarrow g = hg_1 = h'g_2$ with $h, h' \in H$ and $g_2 = h'^{-1}hg_1$ \Rightarrow $Hg_1 = Hg_2$. Consequently, either $Hg_1 = Hg_2$ or $Hg_1 \cap Hg_2 = \emptyset \Rightarrow$ G can be written as $G = H \cup Hg_1 \cup \cdots Hg_{n-1}$ with empty intersections \Rightarrow ord G/ord H = nQ.E.D. **Definition:** The order of an element g is the smallest number rsuch that $g^r = e$ Every element $g \in G$ generates a cyclic subgroup $\mathbb{Z}_r \subseteq G$ The order of every element is a divisor of $\operatorname{ord} G$
Theorem

 $D^{(\alpha)}$ irrep of G, dim $D^{(\alpha)} = d_{\alpha}$, and the index α numbers all inequivalent irreps \Rightarrow

$$\sum_{\alpha} d_{\alpha}^2 = ordG$$

Theorem

The number of inequvialent irreps $D^{(\alpha)} =$ number of classes of G

→ Ξ →

Following types of finite groups usually occur:

- Groups of permutations
- Ø Groups consisting of unitary matrices
- **6** Direct products of such groups
- **4** Semidirect products of such groups

Following types of finite groups usually occur:

- **1** Groups of permutations
- Ø Groups consisting of unitary matrices
- **6** Direct products of such groups
- **4** Semidirect products of such groups

Discussion of

$$S_3, \quad S_4, \quad A_4 \equiv T, \quad D_4, \quad T'$$

S_n: group of all permutations of *n* objects

$$p = \begin{pmatrix} 1 & 2 & \cdots & n \\ p_1 & p_2 & \cdots & p_n \end{pmatrix}, \text{ ord } S_n = n!$$

Cycle of length $r: (n_1 \rightarrow n_2 \rightarrow n_3 \rightarrow \cdots n_r \rightarrow n_1) \equiv (n_1 n_2 n_3 \cdots n_r)$ All numbers n_1, \ldots, n_r are different

Theorem

Every permutation is a unique product of cycles which have no common elements

Example:
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 3 & 5 & 1 & 2 \end{pmatrix} = (145)(3)(26)$$

Remarks:

Cycles which have no common element commute A cycle which consists of only one element is identical with the unit element of S_n

Theorem

The classes of S_n consist of the permutations with the same cycle structure

Examples:

$$S_3$$
: e, (n_1n_2) , $(n_1n_2n_3) \Rightarrow 3$ classes $\Rightarrow 3$ inequivalent irreps

*S*₄: *e*,
$$(n_1n_2)$$
, $(n_1n_2n_3)$, $(n_1n_2n_3n_4)$, $(n_1n_2)(n_3n_4) \Rightarrow 5$ classes \Rightarrow 5 inequivalent irreps

Even and odd permutations:

Every permutation of S_n is associated with an $n \times n$ permutation matrix

For instance
$$(123) \in S_3 \to \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = (e_2 e_3 e_1)$$

In general: $p \in S_n \to M(p) = (e_{p_1} e_{p_2} \cdots e_{p_n})$
Definition: $sgn(p) = det M(p)$
Definition: even (odd) permutation with $sgn(p) = +1$ (-1)

A B > A B >

Sign of cycles: $(n_1n_2n_3\cdots n_{r-1}n_r) = (n_1n_r)(n_1n_{r-1})\cdots (n_1n_3)(n_1n_2) \Rightarrow$ if r is even (odd) then the cycle is odd (even)

Remarks:

 $p \rightarrow M(p)$ is an *n*-dimensional reducible representation properties of determinant $\Rightarrow p \rightarrow \text{sgn}(p)$ is a 1-dimensional irrep

Theorem

 S_n has exactly two 1-dimensional irreps: $p \rightarrow 1$ and $p \rightarrow sgn(p)$

Dimensions if irreps of S_3 : $1^2 + 1^2 + d_3^2 = 6 \Rightarrow d_3 = 2$ Dimensions if irreps of S_4 : $1^2 + 1^2 + d_3^2 + d_4^2 + d_5^2 = 24 \Rightarrow d_3 = 2, d_4 = d_5 = 3$

Structure and irreps of *S*₃:

Generators: h = (123), g = (12) with $h^3 = e$, $g^2 = e$, $ghg = h^2$ Every element of S_3 can be decomposed as $h^k g^{\ell}$ with $k = 0, 1, 2, \ \ell = 0, 1$

$$h \rightsquigarrow \mathbb{Z}_3$$
, $g \rightsquigarrow \mathbb{Z}_2 \Rightarrow$

1-dimensional irreps: $p \to 1$, $p \to \text{sign}(p)$ correspond to irreps of $S_3/\mathbb{Z}_3 \cong \mathbb{Z}_2$

2-dimensional irrep: $(D(h))^3 = (D(g))^2 = 1$ Without loss of generality: D(h) diagonal \Rightarrow

$$h \to D(h) = \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}, \quad g \to D(g) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

with $\omega = e^{2\pi i/3}$

2-dimensional irrep: $(D(h))^3 = (D(g))^2 = 1$ Without loss of generality: D(h) diagonal \Rightarrow

$$h \to D(h) = \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}, \quad g \to D(g) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

with $\omega = e^{2\pi i/3}$

Real version:

$$V^{T} \begin{pmatrix} \omega & 0 \\ 0 & \omega^{2} \end{pmatrix} V = \begin{pmatrix} \cos 120^{\circ} & -\sin 120^{\circ} \\ \sin 120^{\circ} & \cos 120^{\circ} \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$
$$V^{T} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} V = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
with $V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$

Structure and irreps of *S*₄:

Definition: Klein's four-group

 $K = \{e, (12)(34), (13)(24), (14)(23)\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$

K normal subgroup of S_4

< ∃ > <

Structure and irreps of *S*₄:

Definition: Klein's four-group

 $K = \{e, (12)(34), (13)(24), (14)(23)\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$

K normal subgroup of S_4

Theorem

Every element of $s \in S_4$ can be uniquely decomposed as s = kp with $k \in K$ and p being a permutation of the numbers 2,3,4.

Proof: Suppose $s \in S_4$ has the form $s = k_1p_1 = k_2p_2$ $\Rightarrow p_2 = k_1k_2p_1 \Rightarrow k_1k_2 \in K$ must map 1 into 1 $\Rightarrow k_1k_2 = e$ and $k_1 = k_2$, $p_1 = p_2$ Since ord $K \times \text{ord } S_3 = 4 \times 6 = 24 = \text{ord } S_4$ \Rightarrow all elements of S_4 can be written as kp Q.E.D.

$$(k_1p_1)(k_2p_2) = (k_1p_1k_2p_1^{-1})(p_1p_2) \Rightarrow$$

$$\begin{array}{l} \text{Structure of } S_4 \\ S_4 \cong K \rtimes S_3 \end{array}$$

1-dimensional irreps: $p \to 1$, $p \to sign(p)$ 2-dimensional irrep: $kp \to D_2(p)$ where D_2 is the 2-dim irrep of S_3

$$(234) \rightarrow \begin{pmatrix} \omega & 0\\ 0 & \omega^2 \end{pmatrix}, \quad (34) \rightarrow \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

Example: (12) = (12)(34) (34) $\rightarrow \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$

3-dimensional irreps:

3-dimensional representation of $K \cong \mathbb{Z}_2 \times \mathbb{Z}_2$: $k_1 \neq k_2 \neq k_3 \neq k_1 \Rightarrow k_1k_2 = k_2k_1 = k_3$ (34)² = e, (34) commutes with (12)(34), etc.

• Two inequivalent 3-dim irreps: $(34) \rightarrow \pm (e_1e_3e_2)$ • Summary of S_4 irreps:

$$\begin{array}{rll} \mathbf{1}: & kp \rightarrow 1 \\ \mathbf{1}': & kp \rightarrow \mathrm{sgn}(p) \\ s = kp \in S_4 & \mathbf{2}: & kp \rightarrow D_2(p) \\ & \mathbf{3}: & kp \rightarrow A(k)M_3(p) \\ & \mathbf{3}': & kp \rightarrow \mathrm{sgn}(p)A(k)M_3(p) \end{array}$$

 $\begin{array}{l} A\left[\left(12\right)\left(34\right)\right] = \mathrm{diag}\left(1, -1, -1\right), \ \mathrm{etc.}, \ \ldots \\ M_{3}(p) \ 3 \times 3 \ \mathrm{permutation \ matrix} \\ \mathrm{Note:} \ \mathrm{sgn}(p) \equiv \mathrm{det} \ M_{3}(p) \end{array}$

A B F A B F

Alternating group A_n : Group of all even permutation of n objects, ord $A_n = n!/2$ Note that $S_n \cong A_n \rtimes \mathbb{Z}_2$ with \mathbb{Z}_2 genererated e.g. by (12)

• • = • • = •

Alternating group A_n : Group of all even permutation of n objects, ord $A_n = n!/2$

Note that $S_n \cong A_n \rtimes \mathbb{Z}_2$ with \mathbb{Z}_2 genererated e.g. by (12)

Theorem

 A_n simple for $n \ge 5$ A_5 with 60 elements smallest simple group!

→ ∃ →

Alternating group A_n : Group of all even permutation of n objects, ord $A_n = n!/2$

Note that $S_n \cong A_n \rtimes \mathbb{Z}_2$ with \mathbb{Z}_2 genererated e.g. by (12)

Theorem

 A_n simple for $n \ge 5$ A_5 with 60 elements smallest simple group!

Theorem (Properties of A_4)

 A_4 has Klein's four-group K as proper normal subgroup $A_4/K \simeq \mathbb{Z}_3$ with \mathbb{Z}_3 generated by (234) Smallest group with a 3-dim irrep

Irreps of A_4 :

$$\begin{aligned} \mathbf{1} &: \quad kp \to 1 \\ \mathbf{1}' &: \quad k \to 1, \quad (234) \to \omega, \quad (243) \to \omega^2 \\ \mathbf{1}'' &: \quad k \to 1, \quad (234) \to \omega^2, \quad (243) \to \omega \\ \mathbf{3} &: \quad k \to A(k), \ (234) \to \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \ (243) \to \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \end{aligned}$$

Remarks: $1^2 + 1^2 + 1^2 + 3^2 = 12 = \text{ord } A_4$ Four classes: {*e*}, {(12)(34), (13)(24), (14)(23)}, {(132), (124), (234), (143)}, {(123), (142), (243), (134)}

Dihedral groups *D_n*:

Definition: D_n is the group of order 2n generated by

$$R_n = \begin{pmatrix} \cos\frac{2\pi}{n} & -\sin\frac{2\pi}{n} \\ \sin\frac{2\pi}{n} & \cos\frac{2\pi}{n} \end{pmatrix}, \quad S = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

 D_n consists of the elements $\{\mathbb{1}, R_n, \dots, R_n^{n-1}, S, R_nS, \dots, R_n^{n-1}S\}$ Properties: $R_n^n = S^2 = \mathbb{1}$, $SR_nS = R_n^{-1} = R_n^{n-1}$

Dihedral groups *D_n*:

Definition: D_n is the group of order 2n generated by

$$R_n = \begin{pmatrix} \cos\frac{2\pi}{n} & -\sin\frac{2\pi}{n} \\ \sin\frac{2\pi}{n} & \cos\frac{2\pi}{n} \end{pmatrix}, \quad S = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

 D_n consists of the elements $\{\mathbb{1}, R_n, \dots, R_n^{n-1}, S, R_nS, \dots, R_n^{n-1}S\}$ Properties: $R_n^n = S^2 = \mathbb{1}$, $SR_nS = R_n^{-1} = R_n^{n-1}$

Discussion of D_4 : 8 elements, R_4 rotation by 90°, S reflection at x-axis

Classes: {1}, {-1}, {
$$\pm R_4$$
}, { $\pm S$ }, { $\pm R_4S$ }
Dimensions of irreps of D_4 : $1^2 + d_2^2 + \cdots + d_5^2 = 8$
 $\Rightarrow d_2 = d_3 = d_4 = 1, d_5 = 2$

Irreps of D_4 : D_4 defined via 2-dim irrep! 1-dim irreps: $S^2 = R_4^4 = \mathbb{1}$, $SR_4S = R_4^3 \Rightarrow S \rightarrow \pm 1$, $R_4 \rightarrow \pm 1$ $\mathbf{1}^{(p,q)}$: $S \rightarrow (-1)^p$, $R_4 \rightarrow (-1)^q$

A B > A B >

Subgroups of SO(3) vs. subgroups of SU(2)Subgroup of $SO(3) \rightsquigarrow$ subgroup of SU(2)Connection between SO(3) and SU(2): α = rotation angle, \vec{n} = rotation axis

Every rotation induces exactly two SU(2) transformations via

$$U\vec{\sigma}\cdot\vec{x} U^{\dagger} = \vec{\sigma}\cdot(R(\alpha,\vec{n})\vec{x}) \Rightarrow U(\alpha,\vec{n}) = \pm\left(\cos\frac{\alpha}{2}\mathbb{1} - i\sin\frac{\alpha}{2}\vec{n}\cdot\vec{\sigma}\right)$$

With this construction, for every $G \subset SO(3)$ one obtains its double-valued group (covering group) $G' \subset SU(2)$ such that $G'/G \cong \mathbb{Z}_2$, ord $G' = 2 \times \text{ord} G$

Double-valued group of A_4 **:** T'

 $\begin{array}{l} A_4 \subset SO(3) \text{ via its 3-dim faithful irrep!} \\ \text{In this sense, } A_4 \text{ is generated by} \\ A = \text{diag}\left(1, -1, -1\right) = R(180^\circ, \vec{e}_x), \\ E = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} = R\left(-120^\circ, (\vec{e}_x + \vec{e}_y + \vec{e}_z)/\sqrt{3}\right) \\ \Rightarrow T' \text{ generated by} \end{array}$

$$U_A = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad U_R = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi & \phi \\ -\phi^* & \phi^* \end{pmatrix} \quad \text{with} \quad \phi = e^{i\pi/4}$$

Properties of T':

• ord T' = 24

•
$$T'/A_4 \cong \mathbb{Z}_2 \Rightarrow$$
 irreps of A_4 are also irreps of T'

•
$$T'$$
 has 7 classes \Rightarrow 3 irreps missing

•
$$d_5^2 + d_6^2 + d_7^2 = 12 \Rightarrow d_5 = d_6 = d_7 = 2$$

•
$$U_A^2 = U_R^3 = -1$$
, $(U_A U_R)^3 = 1$

Eigenvalues of $U_A U_R$ are ω , ω^2

2-dim irreps of T':

Idea: Suppose $D^{(\beta)}$ is an irrep with dimension $d > 1 \Rightarrow$ Two obvious ways for constructing further irreps of dimension dSuppose $D^{(1,\alpha)}$ ($\alpha = 1, ..., r$) lists all 1-dim irreps \Rightarrow irreps of dim d are obtained by

$$\begin{array}{ll} \bullet & g \rightarrow D^{(1,\alpha)}(g) \times D^{(\beta)}(g) \\ \bullet & g \rightarrow D^{(1,\alpha)}(g) \times (D^{(\beta)}(g))^* \end{array}$$

Method 1 works with **2** of T':

$$\begin{array}{ll} \mathbf{2}': & U_A \to U_A, & U_R \to \omega U_R \\ \mathbf{2}'': & U_A \to U_A, & U_R \to \omega^2 U_R \end{array}$$

Note:

 $T': \mathbf{2} \cong \mathbf{2}^*$ $A_4: \mathbf{1}' \otimes \mathbf{3} \cong \mathbf{1}'' \otimes \mathbf{3} \cong \mathbf{3}!$

Functions on *G*:

Unitary space with scalar product $(f_1|f_2) = \frac{1}{\operatorname{ord} G} \sum_{g \in G} f_1^*(g) f_2(g)$

Theorem

 $D^{(lpha)}$ irreps of G with dimensions $d_{lpha} \Rightarrow$

$$\sum_{g \in G} D_{ij}^{(\alpha)}(g^{-1}) D_{kl}^{(\beta)}(g) = \frac{\text{ord}G}{d_{\alpha}} \,\delta_{\alpha\beta} \delta_{jk} \delta_{il}$$

Functions on *G*:

Unitary space with scalar product $(f_1|f_2) = \frac{1}{\operatorname{ord} G} \sum_{g \in G} f_1^*(g) f_2(g)$

Theorem

 $D^{(lpha)}$ irreps of G with dimensions $d_{lpha} \Rightarrow$

$$\sum_{g \in G} D_{ij}^{(\alpha)}(g^{-1}) D_{kl}^{(\beta)}(g) = \frac{\text{ord}G}{d_{\alpha}} \,\delta_{\alpha\beta} \delta_{jk} \delta_{il}$$

Note:

Theorem follows from Schur's lemma Unitary irrep $\Rightarrow D_{ij}^{(\alpha)}(g^{-1}) = (D^{(\alpha)}(g)^{\dagger})_{ij} = (D^{(\alpha)}(g)_{ji})^*$

Schur's lemma:

- *D* irrep on \mathcal{V} , *A* linear operator on \mathcal{V} such that AD = DA $\Rightarrow A \propto \mathbb{1}$
- Two non-equivalent irreps $D^{(1)} \text{ acting on } \mathcal{V}_1, \ D^{(2)} \text{ acting on } \mathcal{V}_2,$ $A: \mathcal{V}_1 \to \mathcal{V}_2 \text{ such that } AD^{(1)} = D^{(2)}A \Rightarrow A = 0$

Proof of theorem:

Part 1: D irrep on \mathcal{V} with dimension d $A \equiv \sum_{h \in G} D(h^{-1})BD(h)$ with B arbitrary linear operator on \mathcal{V} $\Rightarrow AD(g) = D(g)A \ \forall g \in G \Rightarrow A = \lambda \mathbb{1}$ Choose $B_{ii} = \delta_{ik} \delta_{il}$ $A_{pq} = \lambda(kl)\delta_{pq} = \sum_{h \in G} D(h^{-1})_{pk} D(h)_{lq}$ Computation of $\lambda(kl)$ by summation over p = q: $\lambda(kl)d = \sum_{k} \delta_{kl} = \operatorname{ord} G \delta_{kl} \Rightarrow$ $\sum_{h \in G} D(h^{-1})_{pk} D(h)_{lq} = (\operatorname{ord} G/d) \delta_{pq} \delta_{kl} \checkmark$ Part 2: $B: \mathcal{V}_1 \to \mathcal{V}_2$ arbitrary $\Rightarrow A \equiv \sum_{h \in C} D^{(2)}(h^{-1})BD^{(1)}(h)$ fulfills $AD^{(1)} = D^{(2)}A \Rightarrow A = 0$ etc. Q.E.D.

Definition

Character of an irrep:

$$\chi^{(lpha)}: egin{array}{ccc} {\cal G} & o & {\mathbb C} \ {\cal g} & o & \chi^{(lpha)}({\cal g}) = {
m Tr}\, {\cal D}^{(lpha)}({\cal g}) \end{array}$$

Definition

Character of an irrep:

$$\chi^{(\alpha)}: egin{array}{ccc} G & o & \mathbb{C} \ g & o & \chi^{(lpha)}(g) = \operatorname{Tr} D^{(lpha)}(g) \end{array}$$

Properties of characters:

• The character $\chi^{(\alpha)}$ is constant on every class $C_k \Rightarrow$ denote value of character by $\chi_k^{(\alpha)}$ on C_k

•
$$\chi^{(\alpha)}(e) = d_a$$

 Let c_k be the number of elements in class C_k ⇒ orthogonality relation

$$\sum_{k=1}^{n} c_k \left(\chi_k^{(\alpha)} \right)^* \chi_k^{(\beta)} = \delta_{\alpha\beta} \operatorname{ord} G$$

Proof of orthogonality relation:

$$\sum_{g \in G} (D^{(\alpha)}(g)_{ji})^* D^{(\beta)}_{kl}(g) = \frac{\operatorname{ord} G}{d_{\alpha}} \,\delta_{\alpha\beta} \delta_{jk} \delta_{il}$$

i = j, k = l, summation over i, $k \Rightarrow$

$$\sum_{g \in G} (\chi^{(\alpha)}(g))^* \chi^{(\beta)}(g) = \frac{\operatorname{ord} G}{d_{\alpha}} \, \delta_{\alpha\beta} \, d_{\alpha} = \operatorname{ord} G \, \delta_{\alpha\beta}$$

Sum over $g \in G \rightsquigarrow$ sum over classes

Q.E.D.

Proof of orthogonality relation:

$$\sum_{g \in G} (D^{(\alpha)}(g)_{ji})^* D^{(\beta)}_{kl}(g) = \frac{\operatorname{ord} G}{d_{\alpha}} \,\delta_{\alpha\beta} \delta_{jk} \delta_{il}$$

i = j, k = l, summation over i, $k \Rightarrow$

$$\sum_{g \in G} (\chi^{(\alpha)}(g))^* \chi^{(\beta)}(g) = \frac{\operatorname{ord} G}{d_{\alpha}} \,\delta_{\alpha\beta} \,d_{\alpha} = \operatorname{ord} G \,\delta_{\alpha\beta}$$

Sum over $g \in G \rightsquigarrow$ sum over classes Q.E.D.

Remarks: n = # classes ON system $\left(\sqrt{\frac{c_1}{\text{ord}\,G}}\,\chi_1^{(\alpha)}, \dots, \sqrt{\frac{c_n}{\text{ord}\,G}}\,\chi_n^{(\alpha)}\right) \Rightarrow N_{\text{irreps}} \leq n$ Proof that $N_{\text{irreps}} \geq n$ needs different technique

Characters and reducible representations:

D reducible representation, $D^{(\alpha)}$ occurs n_{α} times in *D* \Rightarrow multiplicity of $D^{(\alpha)}$ in *D* given by $n_{\alpha} = (\chi^{(\alpha)}|\chi_D)$

Characters and reducible representations:

D reducible representation, $D^{(\alpha)}$ occurs n_{α} times in *D* \Rightarrow multiplicity of $D^{(\alpha)}$ in *D* given by $n_{\alpha} = (\chi^{(\alpha)}|\chi_D)$

Application: Characters allow e.g. to reduce $D^{(\beta)} \otimes D^{(\beta')}$ Motivation for character tables
Character tables and tensor products

Example: regular representation Basis of vector space given by all group elements $\{g_1, g_2, \ldots, g_N\}$ with $N \equiv \text{ord} G$ $g_i g_j = R(g_i)_{kj} g_k \Rightarrow R(g_i)$ is $N \times N$ permutation matrix $\chi_R(e) = N, \ \chi_R(g) = 0 \ \forall g \neq e$

$$(\chi^{(\alpha)}|\chi_R) = \frac{1}{N} \sum_g (\chi^{(\alpha)}(g))^* \chi_R(g)$$
$$= \frac{1}{N} (\chi^{(\alpha)}(e))^* \chi_R(e)$$
$$= \frac{1}{N} \times d_\alpha \times N = d_\alpha$$

Character tables and tensor products

Example: regular representation Basis of vector space given by all group elements $\{g_1, g_2, \ldots, g_N\}$ with $N \equiv \text{ord} G$ $g_i g_j = R(g_i)_{kj} g_k \Rightarrow R(g_i)$ is $N \times N$ permutation matrix $\chi_R(e) = N, \ \chi_R(g) = 0 \ \forall g \neq e$

$$(\chi^{(\alpha)}|\chi_R) = rac{1}{N} \sum_g (\chi^{(\alpha)}(g))^* \chi_R(g)$$

 $= rac{1}{N} (\chi^{(\alpha)}(e))^* \chi_R(e)$
 $= rac{1}{N} imes d_lpha imes N = d_lpha$

 $D^{(\alpha)}$ occurs d_{lpha} times in regular representation $\Rightarrow \sum_{lpha} d_{lpha}^2 = \operatorname{ord} G$

Character table:

 $\begin{array}{l} n = \text{number of irreps} = \text{number of classes} \\ \text{Classes } C_k, \ c_k = \text{number of members of } C_k \\ \text{ord } (C_k) = \text{order of elements of } C_k \\ \text{Irreps } D^{(\alpha)}, \ \text{characters } \chi^{(\alpha)}(g) = \text{Tr} \left(D^{(\alpha)}(g) \right) \\ \chi^{(\alpha)}_k = \chi^{(\alpha)}(g) \ \text{with } g \in C_k \end{array}$

G	C_1	<i>C</i> ₂	•••	Cn
$(\# C_k)$	(c_1)	(c_2)	•••	(c_n)
ord (C_k)	ν_1	ν_2	•••	ν_n
$D^{(1)}$	$\chi_{1}^{(1)}$	$\chi_{2}^{(1)}$		$\chi_n^{(1)}$
D ⁽²⁾	$\chi_1^{(2)}$	$\chi_2^{(2)}$		$\chi_n^{(2)}$
:	÷	÷	÷	÷
$D^{(n)}$	$\chi_1^{(n)}$	$\chi_2^{(n)}$		$\chi_n^{(n)}$

Character tables and tensor products

Conventions:
$$D^{(1)}$$
 trivial 1-dim irrep $\Rightarrow \chi_k^{(1)} = 1 \ \forall k$
 $C_1 = \{e\} \Rightarrow \chi_1^{(\alpha)} = d_{\alpha}$

First line and first column of character table

First line: 1 in all entries First column: dimensions d_{α} of irreps

ON system
$$\sqrt{\frac{c_k}{\text{ord}\,G}} \begin{pmatrix} \chi_k^{(1)} \\ \vdots \\ \chi_k^{(n)} \end{pmatrix}$$
 $(k = 1, \dots, n)$

$$\sum_{\alpha=1}^{n} \left(\chi_{k}^{(\alpha)}\right)^{*} \chi_{\ell}^{(\alpha)} = \frac{\operatorname{ord} G}{c_{k}} \,\delta_{k\ell}$$

Character table of *D*₄:

Classes:

$$\begin{array}{l} C_1 = \{1\}, \ C_2 = \{-1\}, \ C_3 = \{\pm R_4\}, \ C_4 = \{\pm S\}, \ C_5 = \{\pm R_4S\} \\ 1\text{-dim irreps } \mathbf{1}^{(p,q)}: \quad S \to (-1)^p, \quad R_4 \to (-1)^q \\ \text{Note:} \ -1 = R_4^2 \Rightarrow -1 \to 1 \text{ in } 1\text{-dim irreps} \end{array}$$

D_4	C_1	<i>C</i> ₂	<i>C</i> ₃	<i>C</i> ₄	C_5
$(\# C_k)$	(1)	(1)	(2)	(2)	(2)
ord (C_k)	1	2	4	2	2
1 ^(0,0)	1	1	1	1	1
$1^{(1,0)}$	1	1	1	-1	-1
$1^{(0,1)}$	1	1	-1	1	-1
$1^{(1,1)}$	1	1	-1	-1	1
2	2	-2	0	0	0

Example:
$$\mathbf{2} \otimes \mathbf{2}$$

 $\chi^{(2\otimes 2)} = \chi^{(2)} \times \chi^{(2)} = 4, 4, 0, 0, 0$
 $(\chi^{(2)}|\chi^{(2\otimes 2)}) = \frac{1}{8}(2 \times 4 + (-2) \times 4) = 0$
 $(\chi^{(\mathbf{1}^{(p,q)})}|\chi^{(2\otimes 2)}) = \frac{1}{8}(1 \times 4 + 1 \times 4) = 1$
 $\mathbf{2} \otimes \mathbf{2} = \mathbf{1}^{(0,0)} \oplus \mathbf{1}^{(1,0)} \oplus \mathbf{1}^{(0,1)} \oplus \mathbf{1}^{(1,1)}$

Character tables and tensor products

Character table of *A*₄:

Example:
$$\chi^{(3\otimes3)} = \chi^{(3)} \times \chi^{(3)} = 9, 1, 0, 0$$

 $(\chi^{(3)}|\chi^{(3\otimes3)}) = \frac{1}{12} (3 \times 9 + 3 \times (-1) \times 1) = 2$
 $(\chi^{(1)}|\chi^{(3\otimes3)}) = (\chi^{(1')}|\chi^{(3\otimes3)}) = (\chi^{(1'')}|\chi^{(3\otimes3)}) = \frac{1}{12} (1 \times 9 + 3 \times 1 \times 1) = 1$

$$\mathbf{3}\otimes\mathbf{3}=\mathbf{1}\oplus\mathbf{1}'\oplus\mathbf{1}''\oplus\mathbf{3}\oplus\mathbf{3}$$

(E)

э

Classes:

$$C_1 = \{e\},\ C_2 = \{(12)(34), (13)(24), (14)(23)\},\ C_3 = \{(132), (124), (234), (143)\},\ C_4 = \{(123), (142), (243), (134)\}$$

Generators of **3**:

$$(12)(34) \to A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad (243) \to E = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
$$\begin{array}{c} \mathbf{1}: \quad A \to 1, \ E \to 1 \\ \mathbf{1}': \quad A \to 1, \ E \to \omega^2 \\ \mathbf{1}'': \quad A \to 1, \ E \to \omega \end{array}$$

Clebsch–Gordan coefficients for 3 \otimes **3 of** A_4 **:**

Character table of *S*₄:

Classes: $C_1 = \{e\}$, $C_2 = \text{transposition}$ (2-cycle), $C_3 = \text{two transpositions}$, $C_4 = 3$ -cycle, $C_5 = 4$ -cycle

<i>S</i> ₄	C_1	C_2	<i>C</i> ₃	<i>C</i> ₄	C_5
$(\# C_k)$	(1)	(6)	(3)	(8)	(6)
ord (C_k)	1	2	2	3	4
1	1	1	1	1	1
1′	1	-1	1	1	-1
2	2	0	2	-1	0
3	3	1	-1	0	$^{-1}$
3′	3	-1	-1	0	1

Character tables and tensor products

$$\chi^{(2)}:$$
(12), (34) $\rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Rightarrow \chi_{2}^{(2)} = 0, \ \chi_{3}^{(2)} = 2$
(234) $\rightarrow \begin{pmatrix} \omega & 0 \\ 0 & \omega^{2} \end{pmatrix} \Rightarrow \chi_{4}^{(2)} = -1,$
(1234) $= (12)(234) \rightarrow \begin{pmatrix} 0 & \omega^{2} \\ \omega & 0 \end{pmatrix} \Rightarrow \chi_{5}^{(2)} = 0$

Character tables and tensor products

 $\mathbf{3} \otimes \mathbf{3}$ of S_4 :

 $\mathbf{3}\otimes\mathbf{3}=\mathbf{1}\oplus\mathbf{2}\oplus\mathbf{3}\oplus\mathbf{3}'$

1:	$e_1\otimes e_1+e_2\otimes e_2+e_3\otimes e_3$
2 : {	$\int e_1 \otimes e_1 + \omega^2 e_2 \otimes e_2 + \omega e_3 \otimes e_3$
	$\left(e_1 \otimes e_1 + \omega e_2 \otimes e_2 + \omega^2 e_3 \otimes e_3 \right)$
	$\int \frac{1}{\sqrt{2}} \left(e_2 \otimes e_3 + e_3 \otimes e_2 \right)$
3 :	$\left\{ \begin{array}{c} rac{1}{\sqrt{2}}\left(e_3\otimes e_1+e_1\otimes e_3 ight) ight.$
	$\left(\begin{array}{c} rac{1}{\sqrt{2}} \left(e_1 \otimes e_2 + e_2 \otimes e_1 ight) ight)$
	$\left(\begin{array}{c} rac{1}{\sqrt{2}} \left(e_2 \otimes e_3 - e_3 \otimes e_2 \right) \end{array} \right)$
3 ′ :	$\left\{ \begin{array}{c} rac{1}{\sqrt{2}}\left(e_{3}\otimes e_{1}-e_{1}\otimes e_{3} ight) ight.$
	$\left(\begin{array}{c} rac{1}{\sqrt{2}} \left(e_1 \otimes e_2 - e_2 \otimes e_1 ight) ight.$

E 1990

- Introduction
- 2 Theory of finite groups
- **O** Neutrino mass matrices
- Models of neutrino masses and lepton mixing
- Conclusions

- For the time being consider only lepton mass terms
- Assume diagonal charged-lepton mass matrix

Choose unitary 3×3 matrix *S* Consider following symmetries in \mathcal{L}_{Mai} :

- **1** Horizontal symmetry: $\nu_L \rightarrow S \nu_L$
- **2** Generalized CP symmetry: $\nu_L \rightarrow iSC \nu_L^*$

- For the time being consider only lepton mass terms
- Assume diagonal charged-lepton mass matrix

Choose unitary 3×3 matrix *S* Consider following symmetries in \mathcal{L}_{Mai} :

1 Horizontal symmetry: $\nu_L \rightarrow S \nu_L$

2 Generalized CP symmetry: $\nu_L \rightarrow iSC\nu_L^*$

- For the time being consider only lepton mass terms
- Assume diagonal charged-lepton mass matrix

Choose unitary 3×3 matrix *S* Consider following symmetries in \mathcal{L}_{Mai} :

1 Horizontal symmetry: $\nu_L \rightarrow S \nu_L$

2 Generalized CP symmetry: $\nu_L \rightarrow iSC\nu_L^*$

$$\mathcal{M}_{\nu} = U^{*} \hat{m} U^{\dagger}$$

$$\mathbf{0} \Rightarrow \hat{m} \left(U^{\dagger} S U \right) = \left(U^{\dagger} S U \right)^{*} \hat{m}$$

$$\mathbf{2} \Rightarrow \hat{m} \left(U^{\dagger} S U^{*} \right) = \left(U^{\dagger} S U^{*} \right)^{*} \hat{m}$$

$$\mathbf{0} \ W \equiv (U^{\dagger}SU) \qquad \mathbf{0} \ W \equiv (U^{\dagger}SU^{*})$$

 $m_i W_{ij} = (W_{ij})^* m_j$ (no summation) $\Rightarrow m_i |W_{ij}| = |W_{ij}| m_j$ $\Rightarrow W_{ij} = 0$ for $i \neq j$ Assume for simplicity: $m_s \neq 0$

$$\begin{array}{ll} \bullet & \Rightarrow U^{\dagger}SU = \hat{\epsilon} & \text{or} & Su_j = \epsilon_j u_j \\ \bullet & \Rightarrow U^{\dagger}SU^* = \hat{\epsilon} & \text{or} & Su_j^* = \epsilon_j u_j \end{array}$$

 $\hat{\epsilon} = \mathsf{diag}\left(\epsilon_1, \epsilon_2, \epsilon_3\right)$ diagonal sign matrix

$$\mathbf{0} \ W \equiv (U^{\dagger}SU) \qquad \mathbf{2} \ W \equiv (U^{\dagger}SU^{*})$$

 $m_i W_{ij} = (W_{ij})^* m_j$ (no summation) $\Rightarrow m_i |W_{ij}| = |W_{ij}| m_j$ $\Rightarrow W_{ij} = 0$ for $i \neq j$ Assume for simplicity: $m_s \neq 0$

$$\begin{array}{lll} \bullet & \Rightarrow U^{\dagger}SU = \hat{\epsilon} & \text{or} & Su_j = \epsilon_j u_j \\ \bullet & \Rightarrow U^{\dagger}SU^* = \hat{\epsilon} & \text{or} & Su_j^* = \epsilon_j u_j \end{array}$$

 $\hat{\epsilon} = \mathsf{diag}\left(\epsilon_1, \epsilon_2, \epsilon_3\right)$ diagonal sign matrix

Choice of class of matrices S: "reflection" $\mathbf{y} \in \mathbb{C}^3$ with $|y_1|^2 + |y_2|^2 + |y_3|^2 = 1$

$$S_{\mathbf{y}} \equiv \mathbb{1} - 2\mathbf{y}\mathbf{y}^{\dagger} \Rightarrow S_{\mathbf{y}}\mathbf{y} = -\mathbf{y}, \quad S_{\mathbf{y}}\mathbf{y}' = +\mathbf{y}' \text{ for } \mathbf{y}' ot \mathbf{y}$$

Consequence for **1**:

Up to a phase factor, one of the u_i in U identical with **y**

μ - τ -symmetric neutrino mass matrix

$$\mathbf{y} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ -1\\ 1 \end{pmatrix} \sim u_3, \quad S_{\mathbf{y}} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}$$
$$\mathcal{M}_{\nu} = \begin{pmatrix} x & y & y\\ y & z & w\\ y & w & z \end{pmatrix}, \quad U = \begin{pmatrix} c_{12} & s_{12} & 0\\ -\frac{s_{12}}{\sqrt{2}} & \frac{c_{12}}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\\ -\frac{s_{12}}{\sqrt{2}} & \frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} e^{i\hat{\beta}}$$

In general, $x, y, z, w \in \mathbb{C}$ 6-parameter mass matrix $\mathcal{M}_{\nu} \Leftrightarrow m_{1,2,3}, \theta_{12}, \beta_{1,2}$ Predictions: $\theta_{13} = 0^{\circ}, \theta_{23} = 45^{\circ}$ (CKM phase δ meaningless)

Trimaximal neutrino mass matrix

$$\mathbf{y} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix} \sim u_2, \quad S_{\mathbf{y}} = \frac{1}{3} \begin{pmatrix} 1 & -2 & -2\\-2 & 1 & -2\\-2 & -2 & 1 \end{pmatrix}$$
$$\mathcal{M}_{\nu} = \begin{pmatrix} r+s & u & v\\ u & r+v & s\\ v & s & r+u \end{pmatrix} \quad \text{with} \quad r, s, u, v \in \mathbb{C}$$

7-parameter mass matrix $\mathcal{M}_{\nu} \Rightarrow 2$ predictions

$$\begin{split} |U_{e2}|^2 &= 1/3 \quad \Rightarrow \qquad s_{12}^2 = \frac{1}{3(1-s_{13}^2)} \ge \frac{1}{3} \\ |U_{\mu 2}|^2 &= 1/3 \quad \Rightarrow \qquad \tan 2\theta_{23} = \frac{1-2s_{13}^2}{s_{13}\cos\delta\sqrt{2-3s_{13}^2}} \end{split}$$

3

Harrison, Perkins, Scott (2002): TBM Combine bimaximal and trimaximal \Rightarrow

$$U = \begin{pmatrix} 2/\sqrt{6} & 1/\sqrt{3} & 0\\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2}\\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix} e^{i\hat{\beta}} \equiv U_{\rm HPS} e^{i\hat{\beta}}$$

Bimaximal: x + y = z + wtrimaximal: u = v5-parameter mass matrix $\mathcal{M}_{\nu} \Leftrightarrow m_{1,2,3}, \beta_{1,2}$ Predictions: $\theta_{12} = 35.26^{\circ}, \theta_{23} = 45^{\circ}, \theta_{13} = 0^{\circ}$ (CKM phase δ meaningless)

Remark: Albright, Rodejohann (2008): "trimaximal mixing" $u_1 \equiv (u_1)_{HPS} \Rightarrow s_{12}^2 \le 1/3$ Generalized CP transformation: $\nu_L \rightarrow i S_y C \nu_L^*$

$$S_{\mathbf{y}}=\left(egin{array}{ccc} 1&0&0\ 0&0&1\ 0&1&0\end{array}
ight)\Rightarrow\mathcal{M}_{
u}=\left(egin{array}{ccc} a&r&r^*\ r&s&b\ r^*&b&s^*\end{array}
ight)\ r,s\in\mathbb{C},\ a,b\in\mathbb{R}$$

Consequence for $\boldsymbol{2}$ with above S:

$$\epsilon_j = 1 \Rightarrow u_j = \begin{pmatrix} c_j \\ d_j \\ d_j^* \end{pmatrix}, \quad \epsilon_j = -1 \Rightarrow u_j = \begin{pmatrix} ic_j \\ d_j \\ -d_j^* \end{pmatrix}$$

with $c_j \in \mathbb{R}$, $d_j \in \mathbb{C}$ $\Rightarrow |U_{\mu j}| = |U_{\tau j}| \forall j = 1, 2, 3$ Harrison, Scott (2002)

special case of μ - τ -symmetric \mathcal{M}_{ν}

5-parameter mass matrix $\mathcal{M}_{\nu} \Leftrightarrow m_{1,2,3}, \theta_{12}, \theta_{13}$ Predictions: $r^2 s^* \notin \mathbb{R} \Rightarrow \theta_{23} = 45^\circ, e^{i\delta} = \pm i, e^{2i\beta_{1,2}} = \pm 1$ $\sin^2 2\theta_{\text{atm}} = 4 |U_{\mu3}|^2 (1 - |U_{\mu3}|^2) = 1 - s_{13}^4$ Remark: $r^2 s^* \in \mathbb{R} \Leftrightarrow \sin \theta_{13} = 0 \rightarrow$ Start with trimaximal mixing: $\omega \equiv e^{2\pi i/3}$

$$\mathcal{M}_{\nu} = \begin{pmatrix} r+s & u & v \\ u & r+v & s \\ v & s & r+u \end{pmatrix}$$
$$= \begin{pmatrix} x+y+t & z+\omega^2y+\omega t & z+\omega y+\omega^2 t \\ z+\omega^2y+\omega t & x+\omega y+\omega^2 t & z+y+t \\ z+\omega y+\omega^2 t & z+y+t & x+\omega^2 y+\omega t \end{pmatrix}$$

Equivalent parameterizations! (r = x - z)

- ♦ Apply generalized μ –au CP symmetry \Rightarrow $x, y, z, t \in \mathbb{R}$
- delta Assume t = 0

(*) *) *) *)

3-parameter neutrino mass matrix: Grimus, Lavoura (2008)

$$\mathcal{M}_{\nu} = \begin{pmatrix} x+y & z+\omega^2y & z+\omega y\\ z+\omega^2y & x+\omega y & z+y\\ z+\omega y & z+y & x+\omega^2y \end{pmatrix}, \ \omega = e^{2\pi i/3}, \ x, y, z \in \mathbb{R}$$

3 parameters in $\mathcal{M}_{\nu} \Leftrightarrow \Delta m_{\mathrm{atm}}^2$, Δm_{\odot}^2 , θ_{13} Predictions:

$$s_{23} = \frac{1}{\sqrt{2}}, \ e^{i\delta} = \pm i, \ e^{2i\beta_{1,2}} = \pm 1$$
$$s_{12}^2 = \frac{1}{3(1-s_{13}^2)}$$
$$m_s + \sqrt{m_s^2 + \Delta m_{\text{atm}}^2} = \left[\frac{\left(\Delta m_{\text{atm}}^2\right)^2}{3s_{13}^2(2-3s_{13}^2)}\right]^{1/4}$$

 $m_1 + m_2 + m_3$ and m_s as a function of $|U_{e3}|^2$ Neutrino mass-squared differences at their mean values

Neutrinoless $\beta\beta$ decay: $m_{\beta\beta}$ as a function of $|U_{e3}|^2$ Full lines: normal, dashed-dotted lines: inverted spectrum Neutrino mass-squared differences at their mean values

- Introduction
- 2 Theory of finite groups
- Neutrino mass matrices
- Models of neutrino masses and lepton mixing
- Conclusions

- Horizontal symmetry ≡ family symmetry: G_{gauge} × G_{family} (G_{family} could also be gauged)
- Kinetic and gauge terms in \mathcal{L} invariant under G_{family}
- Effect of G_{family} in Yukawa Lagrangian and scalar potential
- Yukawa couplings connected with Clebsch–Gordan coefficients of tensor product of fermion representations
- Proliferation of scalar sector (+ additional fermion fields) vs. predictions for masses and mixings

Lagrangians and horizontal symmetries

Clebsch–Gordan coefficients vs. Yukawa couplings:

Tensor product: $D \otimes D' = D_S \oplus \cdots$ with irreps D, D', D_S Bases: $D : \{e_\alpha\}, D' : \{f_\alpha\}, D_S : \{b_i = \Gamma_{i\alpha\beta}e_\alpha \otimes f_\beta\}$ Transformations:

$$e_{lpha}
ightarrow D_{\gamma lpha} e_{\gamma}$$
, $f_{eta}
ightarrow D_{\delta lpha} f_{\delta}$, $b_i
ightarrow (D_S)_{ji} b_j$

Conditions on coefficient matrices Γ_i :

1h

$$\Gamma_i = \left(D^{\dagger} \Gamma_j {D'}^*\right) (D_S)_{ji}$$

Generic Yukawa couplings: C = charge conjugation matrix

$$\mathcal{L}_{Y} = y\psi_{\alpha}^{T}C^{-1}\gamma_{i\alpha\beta}S_{i}\psi_{\beta}' + \text{H.c.}$$
$$\rightarrow D\psi, \quad D' \rightarrow D'\psi' \implies S \rightarrow D_{S}^{*}S, \quad \gamma_{i} = \Gamma$$

Yukawa couplings partially determined by Clebsch–Gordan coefficients! \Rightarrow reduction of number of parameters

Family symmetry groups in the Lagrangian:

- Can a symmetry in \mathcal{M}_{ν} be a remnant of a symmetry of a complete model of the lepton sector?
- What are the symmetries and multiplets of such a complete model?
- How can one achieve a charged-lepton mass matrix with freedom for adjusting m_{e,μ,τ}?

Fermion families 3-dimensional representations of horizontal group *G*:

- ${\bf 0}$ Abelian: all fermion multiplets in ${\bf 1}\oplus {\bf 1}'\oplus {\bf 1}''$
- ${f 2}$ non-Abelian: ${f 1} \oplus {f 2}$ occurs
- **8** non-Abelian: **3** occurs

Abelian group *G*:

Synonymous with "texture zeros" \Rightarrow

relations among observables

Grimus, Joshipura, Lavoura, Tanimoto (2004):

It is possible to enforce texture zeros in arbitrary entries of the fermion mass matrices by means of Abelian symmetries and an extended scalar sector

C. Low (2004):

Extremal mixing angles: only $\theta_{13}=0^\circ$ can be enforced by Abelian symmetries

Non-Abelian symmetries:

1 \oplus **2**: $G = D_n$ with $n \ge 3$ ($D_3 \cong S_3 \cong \Delta(6)$), O(2), double-valued groups D'_n with $n \ge 2$ ($D'_2 \cong Q_8$)

Possible to enforce $heta_{13}=0^\circ$ and $heta_{23}=45^\circ$

Groups with 3-dim irreps: A_4 , S_4 , A_5 double-valued groups $A'_4 \equiv T'$, S'_4 , dihedral-like groups $\Delta(27)$, $\Delta(54)$ Lie groups SO(3), SU(3)

- ℜ Relations among entries of mass matrices ⇒ non-Abelian groups
- ∗ Clebsch–Gordan coefficients \Rightarrow Yukawa couplings
- * Avoiding extra Goldstone or gauge bosons from breaking of $G \Rightarrow$ finite groups
- * Extended scalar sector \Rightarrow problem of VEV alignment

Seesaw mechanism

Minkowski (1977)

Yanagida; Glashow; Gell-Mann, Ramond, Slansky (1979) SM + $3\nu_R$ + total lepton number violation Remark: could also choose 2 or more than $3\nu_R$

$$\mathcal{L} = \cdots - \sum_{j} \left[\bar{\ell}_{R} \phi_{j}^{\dagger} \Gamma_{j} + \bar{\nu}_{R} \tilde{\phi}_{j}^{\dagger} \Delta_{j} \right] D_{L} + \text{H.c.} + \left(\frac{1}{2} \nu_{R}^{T} C^{-1} M_{R}^{*} \nu_{R} + \text{h.c.} \right) \qquad M_{R} = M_{R}^{T}$$

$$M_{\ell} = \frac{1}{\sqrt{2}} \sum_{j} v_j^* \Gamma_j , \quad M_D = \frac{1}{\sqrt{2}} \sum_{j} v_j \Delta_j$$

Total Majorana mass matrix for left-handed ν fields:

$$\mathcal{M}_{D+M} = \begin{pmatrix} 0 & M_D^T \\ M_D & M_R \end{pmatrix} \quad \text{for} \quad \begin{pmatrix} \nu_L \\ C(\bar{\nu}_R)^T \end{pmatrix}$$

Assumption: $m_D \ll m_R (m_{D,R} \text{ scales of } M_{D,R})$ $m_D \sim m_{e,\mu,\tau}, m_Z$?

Seesaw mechanism:

Mass matrix of light neutrinos: $M_{\nu} = -M_D^T M_R^{-1} M_D$

• $m_{\nu} \sim m_D^2/m_R$ • Mass matrix of heavy neutrinos: $\mathcal{M}_{\nu}^{\text{heavy}} = M_R$ Diagonalization: $(U_R^\ell)^{\dagger} M_\ell U_L^\ell = \hat{m}_\ell, \ U_{\nu}^T \mathcal{M}_{\nu} U_{\nu} = \hat{m}$ Mixing matrix: $U = (U_L^\ell)^{\dagger} U_{\nu}$ Grimus, Lavoura (2001, 2002) Consider following framework:

 $\begin{array}{l} {\rm SM} + \textit{n}_{H} \ \phi + 3 \ \nu_{R} + {\rm soft} \ \textit{L}_{e,\mu,\tau} \ {\rm breaking} \\ {\rm Soft} \ \textit{L}_{\alpha} \ {\rm breaking} \ {\rm by} \ \nu_{R} \ {\rm mass \ term} \end{array}$

Features of this framework:

- Seesaw mechanism
- Yukawa coupling matrices diagonal \Rightarrow M_{ℓ} , M_D diagonal
- Soft breaking of lepton numbers at high scale
- M_R only source of ν mixing
- ν_R mass term has dim 3 \Rightarrow soft $L_{e,\mu,\tau}$ breaking \Rightarrow renormalizable models
Note: M_D , $M_R \mu - \tau$ symmetric $\Leftrightarrow \mathcal{M}_{\nu} \mu - \tau$, i.e. invariant under $\nu_{\mu L} \leftrightarrow \nu_{\tau L} \Leftrightarrow$ $\mathcal{M}_{\nu} = \begin{pmatrix} x & y & y \\ y & z & w \\ y & w & z \end{pmatrix}$ $M_{\ell} \text{ diagonal} \Rightarrow U = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\frac{\sin \theta}{\sqrt{2}} & \frac{\cos \theta}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{\sin \theta}{\sqrt{2}} & \frac{\cos \theta}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$

 $\theta\equiv\theta_{12}$ in general large but non-maximal, θ_{23} maximal, $U_{e3}=0$

Realization of bimaximal mixing in soft-L-breaking framework: SM with $3\phi + 3\nu_R$ + non-abelian horizontal symmetry group

$$G_{H} \Leftarrow \left\{ \underbrace{U(1)_{L_{e}} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}}}_{\text{softly broken}}, \underbrace{\mathbb{Z}_{2} \times \mathbb{Z}'_{2}}_{\text{spont. breaking}} \right\}$$
$$\mathbb{Z}_{2} : \left\{ \begin{array}{l} D_{\mu L} \leftrightarrow D_{\tau L}, \ \nu_{\mu R} \leftrightarrow \nu_{\tau R}, \ \mu_{R} \leftrightarrow \tau_{R}, \\ \phi_{3} \rightarrow -\phi_{3} \\ \mathbb{Z}'_{2} : e_{R} \rightarrow -e_{R}, \ \nu_{e,\mu,\tau R} \rightarrow -\nu_{e,\mu,\tau R}, \ \phi_{1} \rightarrow -\phi_{1} \end{array} \right\}$$
Non-abelian "kernel" of this group is $O(2)$, could be replaced by D_{n} with $n \geq 3$

A B > A B >

A model for bimaximal mixing

$$\begin{split} \mathcal{L}_{Y} &= -y_{1}\bar{D}_{eL}\nu_{eR}\tilde{\phi}_{1} - y_{2}\left(\bar{D}_{\mu L}\nu_{\mu R} + \bar{D}_{\tau L}\nu_{\tau R}\right)\tilde{\phi}_{1} \\ &- y_{3}\bar{D}_{eL}e_{R}\phi_{1} - y_{4}\left(\bar{D}_{\mu L}\mu_{R} + \bar{D}_{\tau L}\tau_{R}\right)\phi_{2} \\ &- y_{5}\left(\bar{D}_{\mu L}\mu_{R} - \bar{D}_{\tau L}\tau_{R}\right)\phi_{3} + \text{H.c.} \\ m_{\mu} &= |y_{4}v_{2} + y_{5}v_{3}|, \quad m_{\tau} = |y_{4}v_{2} - y_{5}v_{3}| \\ &\mathcal{L}_{\text{Maj}} = \frac{1}{2}\nu_{R}^{-1}M_{R}^{*}C\bar{\nu}_{R} + \text{H.c.} \end{split}$$

Finetuning problem: $m_\mu \ll m_ au$

< ∃ >

How the model functions:

 $\hookrightarrow \mu - \tau$ symmetry $\mathbb{Z}_2 \Rightarrow M_{D\mu\mu} = M_{D\tau\tau}$, M_R , $\mathcal{M}_{\nu} \mu - \tau$ symmetric

- $\hookrightarrow M_\ell$ diagonal because of lepton numbers
- \hookrightarrow Auxiliary symmetry $\mathbb{Z}_2' \Rightarrow \phi_{2,3}$ do not couple to $\bar{D}_L \nu_R$
- $\, \hookrightarrow \, \, \mathbb{Z}_2 \, \, \text{spontanously broken VEV of} \, \, \phi_3 \Rightarrow m_\mu \neq m_\tau$
- $\,\,\hookrightarrow\,\,\Delta m_\odot^2/\Delta m_{
 m atm}^2\sim 1/30$ reproduced by by tuning

Non-decoupling in the scalar sector (neutral scalar vertices) for $m_R
ightarrow \infty \Rightarrow$

- Dash Amplitudes of $\mu
 ightarrow e \gamma$, $Z
 ightarrow e^- \mu^+, \ldots \propto 1/m_R^2$
- ▷ Amplitude of, e.g., $\mu \rightarrow 3e$ constant, suppressed by product of 4 Yukawa couplings, within exp. reach?

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

A₄ is smallest finite group (12 elements) with 3-dim irrep
Ma, Rajasekaran (2001) for lepton sector
(in quark sector Wyler (1979), Branco, Nilles, Rittenberg (1980))
Generators of 3:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad E = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix},$$

$$\mathbf{1}' : \quad E \to \omega^2, \quad A \to 1, \quad \mathbf{1}'' : \quad E \to \omega, \quad A \to 1 \quad (\omega = e^{2\pi i/3})$$

$$\mathbf{3} \otimes \mathbf{3} = \mathbf{1} \oplus \mathbf{1}' \oplus \mathbf{1}'' \oplus \mathbf{3} \oplus \mathbf{3}$$

$$\mathbf{1} : \quad e_1 \otimes e_1 + e_2 \otimes e_2 + e_3 \otimes e_3$$

$$\mathbf{1}' : \quad e_1 \otimes e_1 + \omega^2 e_2 \otimes e_2 + \omega e_3 \otimes e_3$$

$$\mathbf{1}'' : \quad e_1 \otimes e_1 + \omega e_2 \otimes e_2 + \omega^2 e_3 \otimes e_3$$

$$\mathbf{3} : \quad e_2 \otimes e_3, e_3 \otimes e_1, e_1 \otimes e_2;$$

$$e_3 \otimes e_2, e_1 \otimes e_3, e_2 \otimes e_1$$

- - E > - E >

He, Keum, Volkas (2005)

 $\begin{array}{ll} \text{fermion fields:} & \ell_R \in \mathbf{1} \oplus \mathbf{1}' \oplus \mathbf{1}'', \quad D_L, \ \nu_R \in \mathbf{3} \\ \text{ scalar fields:} & \text{ doublets } \phi \in \mathbf{3}, \ \phi_0 \in \mathbf{1}, \quad \text{real singlets } \chi \in \mathbf{3} \end{array}$

$$\mathcal{L}_{Y} = \cdots - \left[h_{1} \left(\bar{D}_{1L} \phi_{1} + \bar{D}_{2L} \phi_{2} + \bar{D}_{3L} \phi_{3} \right) \ell_{1R} \right. \\ + h_{2} \left(\bar{D}_{1L} \phi_{1} + \omega \bar{D}_{2L} \phi_{2} + \omega^{2} \bar{D}_{3L} \phi_{3} \right) \ell_{2R} \\ + h_{3} \left(\bar{D}_{1L} \phi_{1} + \omega^{2} \bar{D}_{2L} \phi_{2} + \omega \bar{D}_{3L} \phi_{3} \right) \ell_{3R} \\ + h_{0} \left(\bar{D}_{1L} \nu_{1R} + \bar{D}_{2L} \nu_{2R} + \bar{D}_{3L} \nu_{3R} \right) \tilde{\phi}_{0} + \text{H.c.} \right] \\ + \frac{1}{2} \left[M \left(\nu_{1R}^{T} C^{-1} \nu_{1R} + \nu_{2R}^{T} C^{-1} \nu_{2R} + \nu_{3R}^{T} C^{-1} \nu_{3R} \right) + \text{H.c.} \right] \\ + \frac{1}{2} \left[h_{\chi} \left(\chi_{1} \left(\nu_{2R}^{T} C^{-1} \nu_{3R} + \nu_{3R}^{T} C^{-1} \nu_{2R} \right) \right. \\ + \left. \chi_{2} \left(\nu_{3R}^{T} C^{-1} \nu_{1R} + \nu_{1R}^{T} C^{-1} \nu_{3R} \right) \\ + \left. \chi_{3} \left(\nu_{1R}^{T} C^{-1} \nu_{2R} + \nu_{3R}^{T} C^{-1} \nu_{1R} \right) \right) + \text{H.c.} \right]$$

Mass matrices: $M_D = h_0 v_0 \mathbb{1}$, $M_\ell = \begin{pmatrix} h_1 v_1^* & h_1 v_2^* & h_1 v_3^* \\ h_2 v_1^* & h_2 v_2^* \omega^2 & h_2 v_3^* \omega \\ h_3 v_1^* & h_3 v_2^* \omega & h_3 v_3^* \omega^2 \end{pmatrix}$, $M_R = \begin{pmatrix} M & h_\chi w_3 & h_\chi w_2 \\ h_\chi w_3 & M & h_\chi w_1 \\ h_\chi w_2 & h_\chi w_1 & M \end{pmatrix}$

Vacuum alignment:

$$v_{1} = v_{2} = v_{3} \equiv v \implies M_{\ell} = \sqrt{3}v \begin{pmatrix} h_{1} & 0 & 0 \\ 0 & h_{2} & 0 \\ 0 & 0 & h_{3} \end{pmatrix} U_{\omega}^{\dagger}$$
$$w_{1} = w_{3} = 0, \ h_{\chi}w_{2} \equiv M' \implies M_{R} = \begin{pmatrix} M & 0 & M' \\ 0 & M & 0 \\ M' & 0 & M \end{pmatrix}$$

$$U_{L}^{\ell} \equiv U_{\omega} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1\\ 1 & \omega & \omega^{2}\\ 1 & \omega^{2} & \omega \end{pmatrix}, \quad U_{\nu} = \begin{pmatrix} 1/\sqrt{2} & 0 & -1/\sqrt{2}\\ 0 & 1 & 0\\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \end{pmatrix}$$
$$U = (U_{L}^{\ell})^{\dagger} U_{\nu} = U_{\omega}^{\dagger} U_{\nu} = \text{diag}(1, \omega^{2}, \omega) U_{\text{HPS}} \text{diag}(1, 1, i)$$

Comments:

- Tri-bimaximal mixing for the vacuum alignment shown on previous slide
- Vacuum alignment: possible if scalar potential is CP-conserving
- ℓ_R not in the same A_4 multiplet as D_L , $\nu_R \Rightarrow$ cannot be embedded into a GUT

Model with D_L , $\ell_R \in \mathbf{3}$, type II seesaw: Altarelli, Fergulio (2005), Ma (2006) Scalar sector: gauge doublets $(\phi_0, \phi_1, \phi_2, \phi_3) \in \mathbf{1} \oplus \mathbf{3}$ gauge triplets $(\xi_0, \xi_1, \xi_2, \xi_3) \in \mathbf{1} \oplus \mathbf{3}$

$$M_{\ell} = \begin{pmatrix} h_0 v_0 & h_1 v_3 & h_2 v_2 \\ h_2 v_3 & h_0 v_0 & h_1 v_1 \\ h_1 v_2 & h_2 v_1 & h_0 v_0 \end{pmatrix}$$
$$M_{\nu} = \begin{pmatrix} a & d & c \\ d & a & b \\ c & b & a \end{pmatrix}$$

 $\langle \phi_j^0 \rangle \equiv v_j, \ \langle \xi_k^0 \rangle \propto a, \dots, d$ VEV alignment for TBM: $v_1 = v_2 = v_3, \ c = d = 0$

Some comments on A_4 models

$$U_{\ell} \equiv U_{\omega} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega \end{pmatrix} \text{ with } U_{\ell}^{\dagger} M_{\ell} U_{\ell} \text{ diagonal}$$
$$m_{e} = |h_{0}v_{0} + (h_{1} + h_{2})v|$$
$$m_{\mu} = |h_{0}v_{0} + (h_{1}\omega + h_{2}\omega^{2})v|$$
$$m_{\tau} = |h_{0}v_{0} + (h_{1}\omega^{2} + h_{2}\omega)v|$$
$$U_{\nu} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & \sqrt{2} & 0 \\ 1 & 0 & -1 \\ 1 & 0 & 1 \end{pmatrix}$$
$$U_{\ell}^{\dagger} U_{\nu} = U_{\text{HPS}} \text{ diag} (1, 1, -i)$$

🗇 🕨 🖉 🕑 🖉 🗁

æ

Remarks:

VEV alignment and parameter finetuning Altarelli, Feruglio, Hagedorn, ... non-renormalizable terms, SUSY (new physics at TeV scale), extra dimensions, ...

Breaking of family group G to different subgroups in charged lepton and neutrino sectors ⇒ TBM
 Blum, Hagedorn, Lindner; Altarelli, Feruglio; ...
 Charged lepton sector: A₄ → Z₃(E) (cyclic permutations)
 Neutrino sector: A₄ → Z₂(A),
 additional Z₂ through 2 ↔ 3 symmetry

■ Is S_4 the symmetry group for TBM? (Lam (2008)) Statement: $S_4 \subseteq G$ Construction of seesaw models with more than three ν_R Grimus, Lavoura (2008)

- **I** Use more than three ν_R (4 or 5) for model building
- Enforce diagonal charged-lepton mass matrix
- Discussion of two cases:
 - Trimaximal mixing in \mathcal{M}_{ν} with 3 parameters (four ν_R)
 - **2** TBM mixing (five ν_R)

Trimaximal mixing with 4 right-handed neutrino singlets

Charged-lepton sector:

Fermionic gauge multiplets:

doublets $D_{\alpha L}$, singlets α_R and $\nu_{\alpha R}$ ($\alpha = e, \mu, \tau$)

Family lepton number symmetries $U_{L_{\alpha}}$

 $\Rightarrow \text{ fermion bilinears } \overline{D}_{\alpha L} \alpha_R$ Simplest way to achieve different masses $m_{e,\mu,\tau}$: introduce Higgs doublet ϕ_{α} for each flavour

$$y_1 \sum_{\alpha = e, \mu, \tau} \bar{D}_{\alpha L} \alpha_R \phi_{\alpha} \Rightarrow m_{\alpha} = |y_1 v_{\alpha}|$$

Different charged-lepton masses by different VEVs! Further symmetries of Yukawa couplings:

Yukawa couplings of neutrino singlets:

Add Higgs doublet $\phi_0 \rightarrow$ flavour singlet Lepton family symmetries + permutation symmetry S_3 :

$$y_2 \sum_{lpha = e, \mu, au} ar{D}_{lpha L}
u_{lpha R} ilde{\phi}_0 \quad ext{with} \quad igtar{\phi}_0 = i au_2 \phi_0^*$$

Breaking of family symmetries:

In ν_R mass term \Rightarrow soft breaking by dimension 3 S_3 -invariant mass term:

$$\frac{1}{2}M_{0}^{*}\sum_{\alpha}\nu_{\alpha R}^{T}C^{-1}\nu_{\alpha R} + M_{1}^{*}\left(\nu_{eR}^{T}C^{-1}\nu_{\mu R} + \nu_{\mu R}^{T}C^{-1}\nu_{\tau R} + \nu_{\tau R}^{T}C^{-1}\nu_{eR}\right)$$

Seesaw mechanism:

$$\mathcal{L}_{\nu \text{ mass}} = \left(-\bar{\nu}_R M_D \nu_L + \frac{1}{2} \nu_R^T C^{-1} M_R \nu_R \right) + \text{H.c.}$$
$$= \frac{1}{2} \omega_L^T C^{-1} \mathcal{M}_{D+M} \omega_L + \text{H.c.}$$
$$\mathcal{M}_{D+M} = \left(\begin{array}{c} 0 & M_D^T \\ M_D & M_R \end{array} \right) \quad \text{with} \quad \omega_L = \left(\begin{array}{c} \nu_L \\ C(\bar{\nu}_R)^T \end{array} \right)$$

Mass matrix of light neutrinos: $\mathcal{M}_{
u} = -M_D^T M_R^{-1} M_D$

Application to model construction:

$$M_R = \begin{pmatrix} M_0 & M_1 & M_1 \\ M_1 & M_0 & M_1 \\ M_1 & M_1 & M_0 \end{pmatrix}, M_D \propto \mathbb{1}_3 \Rightarrow \begin{cases} U = U_{\text{HPS}} & \text{fine!} \\ m_1 = m_3 & \text{failure!} \end{cases}$$

Addition of one right-handed neutrino singlet:

- Reduce S_3 to cyclic permutations $(1, C, C^2)$
- Additional ν_R singlet: $C : \nu_{0R} \rightarrow \omega \nu_{0R}$

• Complex scalar singlet:
$$C: \chi \to \omega \chi$$

$$\left[\frac{1}{2}y_{\chi}\nu_{0R}^{T}C^{-1}\nu_{0R}\chi + \frac{1}{2}M_{2}^{*}\left(\nu_{eR}^{T} + \omega\,\nu_{\mu R}^{T} + \omega^{2}\,\nu_{\tau R}^{T}\right)C^{-1}\nu_{0R}\right] + \text{H.c.}$$

Trimaximal mixing with 4 right-handed neutrino singlets

$$\begin{split} M_N &\equiv y_{\chi} \, v_{\chi}^*, \, a \equiv y_2^* \, v_0 \\ M_R &= \begin{pmatrix} M_0 & M_1 & M_1 & M_2 \\ M_1 & M_0 & M_1 & \omega^2 \, M_2 \\ M_1 & M_1 & M_0 & \omega \, M_2 \\ M_2 & \omega^2 \, M_2 & \omega \, M_2 & M_N \end{pmatrix} \quad M_D = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \\ 0 & 0 & 0 \end{pmatrix}, \end{split}$$

Seesaw formula \Rightarrow

$$\mathcal{M}_{
u} = \left(egin{array}{ccc} x+y & z+\omega^2y & z+\omegay \ z+\omega^2y & x+\omega y & z+y \ z+\omega y & z+y & x+\omega^2y \end{array}
ight)$$

白 と く ヨ と く ヨ と …

æ

Trimaximal mixing with 4 right-handed neutrino singlets

$$x = -a^{2} \frac{M_{0} + M_{1}}{(M_{0} - M_{1})(M_{0} + 2M_{1})}$$

$$z = a^{2} \frac{M_{1}}{(M_{0} - M_{1})(M_{0} + 2M_{1})}$$

$$y = -a^{2} \frac{M_{2}^{2}}{M_{N}(M_{0} - M_{1})^{2}}$$

Seesaw mechanism: $M_{0,1,2,N}$ of large seesaw scale $\Rightarrow v_{\chi}$ of seesaw scale

프 () (프)

Addition of generalized CP symmetry:

$$S_{\mathbf{y}} = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right)$$

$$\begin{array}{ll} D_L \to i S_{\mathbf{y}} C D_L^*, & \ell_R \to i S_{\mathbf{y}} C \ell_R^*, & \nu_R \to i S_{\mathbf{y}} C \nu_R^*, & \nu_{0R} \to i C \nu_{0R}^* \\ & \phi \to S_{\mathbf{y}} \phi^*, & \phi_0 \to \phi_0^*, & \chi \to \chi^* \end{array}$$

CP transformation $\Rightarrow y_1, y_2, y_{\chi}, M_0, M_1, M_2 \in \mathbb{R}$ Trivial condition on scalar potential: v_{χ} real $\Rightarrow M_N \in \mathbb{R}$ $\Rightarrow x, y, z \in \mathbb{R} \Rightarrow \mathcal{M}_{\nu}$ trimaximal 3-parameter mass matrix

Symmetry breaking summary:

dim of terms in ${\cal L}$	conserved symmetries
dim 4	CP, \mathbf{z}_{α} , \mathcal{C} , $U_{L_{\alpha}}$
dim 3	CP, \mathbf{z}_{lpha} , $\mathcal C$
dim 2	СР

Remarks:

Eventually, all symmetries are broken spontaneously.

Spontaneous CP breaking $\Leftrightarrow m_{\mu} \neq m_{\tau}$

Model summary:

- * Extension of the SM with 4 ν_R , 4 Higgs doublets, one scalar singlet
- Minimal number of Yukawa couplings

$$\# m_e: m_\mu: m_ au = |v_e|: |v_\mu|: |v_ au|$$

- * Lepton mixing solely from u_R mass matrix M_R
- ** Chain of soft symmetry breaking $G = [(U(1) \times U(1) \times U(1)) \times (\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2)] \rtimes \mathbb{Z}_3$

TBM with 5 right-handed neutrino singlets

Two additional neutrino singlets:

- Modification of previous model: Addition of neutrino singlets ν_{1R}, ν_{2R} and complex scalar singlet χ
- Keep full S_3 in terms of dim 4 and 3 in \mathcal{L} :

$$\begin{array}{l} \diamond \quad \mathcal{C}: \ \nu_{1R} \to \omega \nu_{1R}, \ \nu_{2R} \to \omega^2 \nu_{2R}, \ \chi \to \omega \chi \\ \diamond \quad I_{\mu\tau}: \ \nu_{1R} \leftrightarrow \nu_{2R}, \ \chi \leftrightarrow \chi^* \end{array}$$

• $I_{\mu\tau}$ spontaneously broken with real VEV v_{χ} (trivial condition in the scalar potential)

Note:

2-dim irrep
$$\begin{pmatrix} \chi \\ \chi^* \end{pmatrix}$$
 of $S_3 \cong D_3$: $\begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

TBM with 5 right-handed neutrino singlets

$$\mathcal{L} = \dots + \frac{1}{2} y_3 \left(\chi \, \nu_{1R}^T C^{-1} \nu_{1R} + \chi^* \, \nu_{2R}^T C^{-1} \nu_{2R} \right) \\ + M_2^* \left[\nu_{1R}^T C^{-1} \left(\nu_{eR} + \omega \nu_{\mu R} + \omega^2 \nu_{\tau R} \right) \right. \\ \left. + \nu_{2R}^T C^{-1} \left(\nu_{eR} + \omega^2 \nu_{\mu R} + \omega \nu_{\tau R} \right) \right] \\ \left. + M_4^* \nu_{1R}^T C^{-1} \nu_{2R} + \dots \right]$$

$$M_{R} = \begin{pmatrix} M_{0} & M_{1} & M_{1} & M_{2} & M_{2} \\ M_{1} & M_{0} & M_{1} & \omega^{2}M_{2} & \omega M_{2} \\ M_{1} & M_{1} & M_{0} & \omega M_{2} & \omega^{2}M_{2} \\ M_{2} & \omega^{2}M_{2} & \omega M_{2} & M_{N} & M_{4} \\ M_{2} & \omega M_{2} & \omega^{2}M_{2} & M_{4} & M_{N}' \end{pmatrix}, \quad M_{D} = \begin{pmatrix} a\mathbb{1}_{3\times3} \\ 0_{2\times3} \end{pmatrix}$$

with $M_N\equiv y_3^*v_\chi^*,\ M_N'\equiv y_3^*v_\chi$

・四・・モー・ ・ モ・

æ

Seesaw mechanism: $\mathcal{M}_{\nu} = -M_D^T M_R^{-1} M_D \Rightarrow$

$$\mathcal{M}_{\nu} = \begin{pmatrix} x + y + t & z + \omega^{2}y + \omega t & z + \omega y + \omega^{2}t \\ z + \omega^{2}y + \omega t & x + \omega y + \omega^{2}t & z + y + t \\ z + \omega y + \omega^{2}t & z + y + t & x + \omega^{2}y + \omega t \end{pmatrix}$$

 $y/t = v_{\chi}/v_{\chi}^* \Rightarrow [v_{\chi} \text{ real } \Leftrightarrow y = t]$ and

$$\mathcal{M}_{\nu} = \begin{pmatrix} x + 2y & z - y & z - y \\ z - y & x - y & z + 2y \\ z - y & z + 2y & x - y \end{pmatrix} \Rightarrow \mathsf{TBM}$$

 $G = [(U(1) \times U(1) \times U(1)) \times (\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2)] \rtimes S_3$

同 ト イヨ ト イヨト ヨー うくつ

- Introduction
- 2 Theory of finite groups
- Neutrino mass matrices
- Models of neutrino masses and lepton mixing
- Conclusions

Conclusions

- Symmetries based on finite groups could be a way to tackle the mass and mixing problem.
- Models for lepton mixing (and neutrino masses?) require complicated/contrived extensions of SM
- Such models are in most cases incompatible with Grand Unification
- A route for such models, avoiding vacuum alignment, SUSY, non-renormalizable terms, ..., could be an enlarged ν_R sector (plus extended scalar sector)
 - For the time being, bimaximal and tri-bimaximal mixing are compatible with all experimental results.
 - However, if $s_{13}^2 \sim 0.01$, then alternative ideas are needed.
 - Or a degenerate ν -mass spectrum $\Rightarrow s_{13}^2 \neq 0$ by RGE from high (seesaw) scale to ew. scale.