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Gatto, Sartori, Tonin; Cabibbo, Maiani (1968):
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Harrison, Perkins, Scott (2002):
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Mass spectra of charged fermions (up quarks, down quarks,
charged leptons) strongly hierarchical!

Mixing angles = functions of quark mass ratios?

Mass spectrum of neutrinos: either completely different or
hierarchy not so pronounced

Mixing angles “pure numbers”?
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Neutrino mass spectrum non-degenerate:

m3 my
T T~ Am?
my
Am?
atm Anqgtm

my

Am2 —— 4
my ms

normal inverted
spectrum

Hierarchical spectrum: normal with m; — 0
Am2. /Am2 ~ 30 = m3/my ~ \/Am%, /Am2 ~ 5+ 6
Inverted hierarchy: inverted with m3 — 0

Smallest v mass mq:
ms = my for normal, ms = m3 for inverted
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Neutrino mass terms and parameter counting

[J Majorana neutrinos

[J Charged-lepton mass matrix diagonal
(for the purpose of parameter counting)

1
Ltaj = EI/LTC_IMVI/L + H.c.

M, complex, symmetric!
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Neutrino mass terms and parameter counting

[J Majorana neutrinos

[J Charged-lepton mass matrix diagonal
(for the purpose of parameter counting)

1
Ltaj = EI/LTC_IMVI/L + H.c.

M, complex, symmetric!

Theorem (Schur)

M = M, = 3 unitary matrix U with
Urm,u = diag (my, mp, m3) with m; > 0

PMNS or lepton mixing matrix U (modulo phase multiplications
from the left)
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Neutrino mass terms and parameter counting

U=e¢d Ux3 U3 Uqp diag (1, eiﬁl, eiﬁ2)

with e'® = diag ('™, e'®2, e'*3)
e® are unphysical phases in charged current interaction
(can be absorbed into the charged lepton fields)

1 0 0
Uy = 0 c3 523
0 —s3 23
C13 0 si3 e‘i5
Uiz = 0 1 0
—513 ei5 0 C13
ci2 si2 O

Up = —s12 c2 O
0 0 1
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Neutrino mass terms and parameter counting

Uz U1z Ur2 =
C12€13 S12€13 size” 10
—S12623 — C1253513€"°  C12o023 — s1223s13€” sp3c13
512523 — C12C23513e"(S —C12523 — 512C235136".‘s C€23C13

Conventions:

0 0° <0 <90°

[ 0° <6 < 360°

[ m; < my with Am(zD = m% — m%
Physical phases:
CKM-type phase 9, Majorana phases (31, (>
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Neutrino mass terms and parameter counting

9 physical parameters: 3 masses, 3 angles, 3 phases

Physical parameters in M,,:

6 x 2 = 12 real parameters in M,

first line and column can be made real by phase transformation =
9 real physical parameters in M,

Discrete physical parameter:
sign (m§ — m?) = normal vs. inverted mass spectrum
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Neutrino mass terms and parameter counting

UT M, U = diag (my, my, m3) = m = M, U = U*in

S S *
U= (u,u,u3) = | Myu = mju;
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Neutrino mass terms and parameter counting

UT M, U = diag (my, my, m3) = m = M, U = U*in

S S *
U= (u,u,u3) = | Myu = mju;

Note:
@ In general, uj is not an eigenvector of M, only for real u;.

@ If X is an eigenvalue of M,, then |A] is in general NOT a
neutrino mass.

o However, M{M,u; = m?u;.
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Basics

Definition of a group G:
G is a set with a multiplication rule
o
g €G peG=>gmeC

(g182)83 = 81(8283)

o

(2]
It exists e € G such that eg =g Vg € G.

o

Vg € G itexists gt € Gsuch that g7l g =e.
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Basics

Definition of a group G:
G is a set with a multiplication rule

o
g €G peG=>gmeC

o
(g182)83 = £1(8283)

(2]
It exists e € G such that eg =g Vg € G.

o

Vg € G itexists gt € Gsuch that g7l g =e.

Remarks:
@ left inverse = right inverse,
left unit element = right unit element,
inverse and unit element are unique
@ associativity always fulfilled for mappings
(permutations, matrices, ...)
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Basics

Group representations:

> Vector space V over C

L(V) = set of linear operators on V

D: G — L(V) such that D(g1g2) = D(g1)D(g2)
D(e)=1

vV VvV V
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Basics

Group representations:

> Vector space V over C

L(V) = set of linear operators on V

D: G — L(V) such that D(g1g2) = D(g1)D(g2)
D(e)=1

vV VvV V

Unitary representation:
V with scalar product (x|y) and (D(g)x|D(g)y) = (x|ly) Vg
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Basics

Group representations:

> Vector space V over C

> L(V) = set of linear operators on V
> D: G — L(V) such that D(g1g2) = D(g1)D(g2)
> D(e)=1

Unitary representation:
V with scalar product (x|y) and (D(g)x|D(g)y) = (x|ly) Vg

Irreducible representation: “irrep”

V does not have any non-trivial subspace W such that
DgWw=Wwvg
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Basics

Unitary representations can be decomposed into irreps!
Irreps are the smallest building blocks of representations

D:i(g) O 0
0 Dy(g) 0
Pe)~| o 0 Dbie)
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Basics

H C G is a normal subgroup if gHg ! = HVg € G
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Basics

H C G is a normal subgroup if gHg ! = HVg € G
H normal subgroup of G, then the factor group G/H
consists of the cosets {H, Hgy, Hgs ...} with the multiplication rule

(Hg) (Hg') = Hgg'
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Basics

H C G is a normal subgroup if gHg ! = HVg € G

H normal subgroup of G, then the factor group G/H
consists of the cosets {H, Hgy, Hgs ...} with the multiplication rule
(H g) (Hg') = Hegg'

g1 is conjugate to g if 3g € G such that gg1g ! =

=82
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Basics

H C G is a normal subgroup if gHg ! = HVg € G

H normal subgroup of G, then the factor group G/H
consists of the cosets {H, Hgy, Hgs ...} with the multiplication rule
(H g) (Hg') = Hegg'

g1 is conjugate to g if 3g € G such that gg1g ! =

= 82
“g1 conjugate to g»" defines an equivalence relation
= the sets of equivalent elements are called conjugacy classes.
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Basics

H C G is a normal subgroup if gHg ! = HVg € G

H normal subgroup of G, then the factor group G/H
consists of the cosets {H, Hgy, Hgs ...} with the multiplication rule
(H g) (Hg') = Hegg'

g1 is conjugate to g if 3g € G such that ggi1g ' =g

g1 conjugate to g»" defines an equivalence relation
= the sets of equivalent elements are called conjugacy classes.

Remarks:
{e} is a class.
A normal subgroup consists of complete conjugacy classes of G.
Let H be a proper normal subgroup of G =
@ The mapping f : g € G — Hg € G/H is a homomorphism,
e, f(g)f(g') = f(gg"):
@ Any representation D of G/H induces naturally a
representation D of G via D(g) = D(Hg).
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Basics

Direct product: G x G’ with multiplication law

(g1, 81)(81, 81) = (8181, 8287)

Eg 53 X Z2

Semidirect product: H x4 G

G acts on H via the homomorphism ¢ : G — Aut(H)
Multiplication law: (h1, g1)(h2,82) = (h1 ¢(g1)h2, g182)
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Basics

Direct product: G x G’ with multiplication law

(g1, 81)(81,81) = (8181, 8283)

Eg 53 X Z2

Semidirect product: H x4 G

G acts on H via the homomorphism ¢ : G — Aut(H)
Multiplication law: (h1, g1)(h2,82) = (h1 ¢(g1)h2, g182)
Remarks: If p =id == Hxy G=H x G

Useful question for model builiding: Can a group be decomposed
into a semidirect product?

Semidirect products are ubiquitous!
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Basics

Group S, H proper normal subgroup of S, G subgroup of S with
following properties:

QO HNG = {e},
©Q every element s € S can be written as s = hg with h € H,
geq.

Then the following holds:
o S H x, G with ¢(g)h = ghg ™1,
@ decomposition s = hg is unique,

e S/H=G.

s12 = (hg1)(h2g2) = (hgihag; ) (g182)
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Basics

Symmetries in the Lagrangian vs. symmetry groups:
Multiplet of (fermion) fields 1, ... ¥,

L=i) b Outy+---

j=1
Symmetries 1); — A}f)wk (p=1,..., Ngen) of £

AWP) (p=1,..., Ngey) unitary matrices! J
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Basics

Symmetries in the Lagrangian vs. symmetry groups:
Multiplet of (fermion) fields 1, ... ¥,

L=i) b Outy+---

j=1
Symmetries 1); — A}f)wk (p=1,..., Ngen) of £

AWP) (p=1,..., Ngey) unitary matrices! J

Two approaches to symmetries and Lagrangians:
] £ = imposing symmetries A(P) on £ =
the A(P) represent generators of a group G =
representation of G = G
[J Group G = representations = multiplets of fields = L

Walter Grimus (University of Vienna) Theory of Neutrino Masses and Mixing



Basics

Infinite vs. finite groups
Infinite groups: number of elements is infinite

O Infinitely many inequivalent irreps

[0 Non-compact simple Lie groups G possess no
finite-dimensional unitary irreps apart from the trivial reps

g—1vVgeG
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Basics

Infinite vs. finite groups
Infinite groups: number of elements is infinite

O Infinitely many inequivalent irreps

[0 Non-compact simple Lie groups G possess no
finite-dimensional unitary irreps apart from the trivial reps

g—1vVgeG
Finite groups:
[ Finite number of inequivalent irreps
U All irreps can be considered unitary

[ Since ordG is finite, all numbers concerning properties of the
group and its irreps are finite as well = extremely useful
relations (totally lacking in infinite groups)
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Basics

Infinite vs. finite groups
Infinite groups: number of elements is infinite

O Infinitely many inequivalent irreps
[0 Non-compact simple Lie groups G possess no
finite-dimensional unitary irreps apart from the trivial reps
g—1vVgeG
Finite groups:
[ Finite number of inequivalent irreps
U All irreps can be considered unitary

[ Since ordG is finite, all numbers concerning properties of the
group and its irreps are finite as well = extremely useful
relations (totally lacking in infinite groups)

Remarks:
ordG = # elements of G
Irreps of U(1): e’ — e with n € 7Z
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Theorems on finite groups

Subgroups:

Theorem (Lagrange)

H subgroups of G = ord H is a divisor of ordG
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Theorems on finite groups

Subgroups:

Theorem (Lagrange)

H subgroups of G = ord H is a divisor of ordG

Proof: g1, g» € G, consider the sets Hgy and Hgy.

Suppose Hgi N Hgy is not empty = dg € Hgy N Hg
—g=hg=Hgowithh, € Hand g = I *hgy

= Hg1 = Hgo.

Consequently, either Hgy = Hgy or Hgi N Hgy = @ =

G can be written as

G =HUHg U--- Hg,_1 with empty intersections

=ordG/ordH =n Q.E.D.
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Theorems on finite groups

Subgroups:

Theorem (Lagrange)

H subgroups of G = ord H is a divisor of ordG

Proof: g1, g¢o € G, consider the sets Hg; and Hg».

Suppose Hgi N Hgy is not empty = dg € Hgy N Hg

—g=hg=Hgowithh, € Hand g = I *hgy

= Hg1 = Hgo.

Consequently, either Hgy = Hgy or Hgi N Hgy = @ =

G can be written as

G =HUHg U--- Hg,_1 with empty intersections

=ordG/ordH =n Q.E.D.
The order of an element g is the smallest number r

such that g" = e

Every element g € G generates a cyclic subgroup Z, C G

The order of every element is a divisor of ord G
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Theorems on finite groups

D(e) irrep of G, dim D(@) = d,, and the index o« numbers all
inequivalent irreps =

>, d2 = ordG

The number of inequvialent irreps D(®) = number of classes of G
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Finite groups used as family symmetries

Following types of finite groups usually occur:
[0 Groups of permutations
O Groups consisting of unitary matrices
O Direct products of such groups

[0 Semidirect products of such groups
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Finite groups used as family symmetries

Following types of finite groups usually occur:
0 Groups of permutations
O Groups consisting of unitary matrices
O Direct products of such groups

[0 Semidirect products of such groups

Discussion of

S3, Sa, As=T, Dy, T
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Finite groups used as family symmetries

Sh: group of all permutations of n objects

1 2 ... n
= , ordS,=n!
P <P1 p2 - Pn> "

Cycle of length r: (ny — np — n3 — ---n, — n1) = (nnen3 -~ n,)
All numbers n1, ..., n, are different

Every permutation is a unique product of cycles which have no
common elements

Bample: (23 5 5 5 )~ 19)3)20)

Remarks:

Cycles which have no common element commute

A cycle which consists of only one element is identical with the
unit element of S,
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Finite groups used as family symmetries

The classes of S,, consist of the permutations with the same cycle

Structure

Examples:

S3: e, (niny), (nin2n3) = 3 classes = 3 inequivalent irreps

Sys: e, (nn2), (ninans), (ninansng), (nin2)(n3ng) =5 classes =
5 inequivalent irreps
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Finite groups used as family symmetries

Even and odd permutations:
Every permutation of S, is associated with an n x n permutation
matrix

For instance (123) € S3 —

o = O

01
00 = (626361)
10

—~

In general: p€ S, — M(p) =

sgn(p) = det M(p)
even (odd) permutation with sgn(p) = +1 (—1)

€0 €p, """ €p,)
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Finite groups used as family symmetries

Sign of cycles:

(n1n2n3 T nr—1nr) = (nlnr)(nlnr—l) s (n1n3)(n1n2) =

if r is even (odd) then the cycle is odd (even)

Remarks:

p — M(p) is an n-dimensional reducible representation
properties of determinant = p — sgn(p) is a 1-dimensional irrep

Sn has exactly two 1-dimensional irreps:
p — 1 and p — sgn(p)

Dimensions if irreps of S3: 12 + 12 + d32 =6=d3=2
Dimensions if irreps of Sy: 124124 d§ + df + dg =24 =
dz3=2,dy=ds =3
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Finite groups used as family symmetries

Structure and irreps of Ss:

Generators: h = (123), g = (12) with h®* = e, g2 = e, ghg = h?
Every element of S3 can be decomposed as
h*g® with k =0,1,2, ¢ =0,1

h~s 73, g ~ Zp =
S3gZ3>4Z2

1-dimensional irreps: p — 1, p — sign(p)
correspond to irreps of S3/7Z3 = 7y
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Finite groups used as family symmetries

2-dimensional irrep: (D(h))® = (D(g))? =1
Without loss of generality: D(h) diagonal =

h—>D(h)=<°g £2> g*D(g):<$ (1)>

with w = 27i/3
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Finite groups used as family symmetries

2-dimensional irrep: (D(h))® = (D(g))? =1
Without loss of generality: D(h) diagonal =

h—om= (5 %) e~oe=(] ;)

with w = 27i/3

Real version:

vi( v 0 V— cos120° —sin120° |
0 w? —\ sin120°  cos120° )
0 1
1 v 0

5)

S
| |
Nl N|$
N———
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Finite groups used as family symmetries

Structure and irreps of S;:

Klein's four-group
K = {e, (12)(34), (13)(24), (14)(23)} = Za x Z»

K normal subgroup of 54
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Finite groups used as family symmetries

Structure and irreps of S;:

Klein's four-group
K = {e, (12)(34), (13)(24), (14)(23)} = Za x Z»

K normal subgroup of 54

Every element of s € S4 can be uniquely decomposed as s = kp
with k € K and p being a permutation of the numbers 2,3,4.

Proof: Suppose s € 54 has the form s = kyp1 = kopo

= po = kikopy = kikp € K must map 1 into 1

= kikp = e and k1 = ky, p1 = p

Since ord K x ord S3 =4 x 6 =24 = ord S4

= all elements of S4 can be written as kp Q.E.D.

Walter Grimus (University of Vienna) Theory of Neutrino Masses and Mixing



Finite groups used as family symmetries
Structure of S4
(kip1)(kap2) = (kiprkop; ) (p1p2) = S KxS;

1-dimensional irreps: p — 1, p — sign(p)

2-dimensional irrep: kp — Dy(p) where D5 is the 2-dim irrep of S3

@) (5 %) eo-(] )

Example: (12) = (12)(34) (34) — < 2 (1) >
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Finite groups used as family symmetries

3-dimensional irreps:

3-dimensional representation of K = 7y X Z»:
ki # ko # k3 # ki = kika = koki = k3

(34)? = e, (34) commutes with (12)(34), etc.

(34) —

(12) (34) — diag ( 1,—-1,—1)
(13)(24) — diag (-1, 1,—1) (24) —
(14) (23) — diag (-1, -1, 1)

(23) —

O H O B O O O O =+
O O BrH O +rH O+ O O
_ O O O O — O +~ O
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Finite groups used as family symmetries

Two inequivalent 3-dim irreps: (34) — +(e1e3€2)

Summary of S, irreps:

1: kp—1
1": kp — sgn(p)
s=kpeSs 2: kp— Dip)

3: kp— A(k)Ms(p)

3" kp — sgn(p) A(k)Ms(p)
A[(12) (34)] = diag (1,-1,-1), etc,, ...
Ms(p) 3 x 3 permutation matrix
Note: sgn(p) = det M3(p)
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Finite groups used as family symmetries

Alternating group A,: Group of all even permutation of n
objects, ord A, = n!/2

Note that S, = A, x Zy with Z; genererated e.g. by (12)
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Finite groups used as family symmetries

Alternating group A,: Group of all even permutation of n
objects, ord A, = n!/2

Note that S, = A, x Zy with Z; genererated e.g. by (12)

A, simple for n > 5
As with 60 elements smallest simple group!
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Finite groups used as family symmetries

Alternating group A,: Group of all even permutation of n
objects, ord A, = n!/2

Note that S, = A, x Zy with Z; genererated e.g. by (12)

A, simple for n > 5
As with 60 elements smallest simple group!

Theorem (Properties of Ag)

Ay has Klein's four-group K as proper normal subgroup
As/K ~ 73 with Z3 generated by (234)
Smallest group with a 3-dim irrep
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Finite groups used as family symmetries

Irreps of Aj:

1: kp—1
1: k—1, (234) »w, (243)— w?
17: k—1, (234) —w? (243)—w

0 01 010
3:  k— A(k), (234) — ( 100 ) (243) — (o 0 1)
010 1 00
Remarks:
1°+1241°+32=12=o0rd A4
Four classes: {e}, {(12)(34), (13)(24), (14)(23)},
{(132), (124), (234), (143)}, {(123), (142), (243), (134)}
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Finite groups used as family symmetries

Dihedral groups D,:
Dy, is the group of order 2n generated by

2 s 27
cos <L  —sin <L
Rn = - on o | S:<1 0>
sin <% cos =% 0 -1
D, consists of the elements {1,R,,...,R" .S R,S,...,R"~1S}
Properties: R7 = S2 =1, SR,S = R,;1 = R1~1
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Finite groups used as family symmetries

Dihedral groups D,:
Dy, is the group of order 2n generated by

2 L2
cos <&  —sin =&
Rn = - on o | S:<1 0>

sin <% cos =% 0 -1
D, consists of the elements {1,R,,...,R" .S R,S,...,R"~1S}
Properties: R7 = S2 =1, SR,S = R,;1 = R1~1
Discussion of D,: 8 elements, R4 rotation by 90°, S reflection at
X-axis
Classes: {1}, {—1}, {£Ra}, {£S}, {£R4S}
Dimensions of irreps of Dy: 12 + d22 4+ -+ d52 =8
:>d2:d3:d4:1, d5:2
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Finite groups used as family symmetries

Irreps of Dy:
D, defined via 2-dim irrep!
1-dim irreps: S2 =R} =1, SRS=R} =S — £1, Ry — %1

1P9 ;5§ (—1)P, Ry — (—1)7
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Finite groups used as family symmetries

Subgroups of SO(3) vs. subgroups of SU(2)
Subgroup of SO(3) ~~ subgroup of SU(2)
Connection between SO(3) and SU(2):

« = rotation angle, ii = rotation axis

Every rotation induces exactly two SU(2) transformations via

Ué-RU" =G-(R(a, A)X) = U(a,ﬁ)z:l:(cos%]l—isin%ﬁ-&’)

With this construction, for every G C SO(3) one obtains its
double-valued group (covering group) G’ C SU(2) such that
G'/G =7y, ord G' =2 x ordG
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Finite groups used as family symmetries

Double-valued group of A;: T’

A4 C SO(3) via its 3-dim faithful irrep!

In this sense, A4 is generated by

A =diag (1,—1,—1) = R(180°, &),
010

E=|0 0 1 |=R(-120°(&+¢& +&)/V3)
100

= T’ generated by

UA:/'<(1) é) UR:%<_Q;* g) with ¢ = e'™/*
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Finite groups used as family symmetries

Properties of T':
eoord T' =24
o T'/Ay = Zyp = irreps of Ay are also irreps of T’
@ T’ has 7 classes = 3 irreps missing
d+dZ+d2=12=ds=ds=d7y =2
o U2=U3=—1, (UsUr)® =1
2

(]

Eigenvalues of UpUg are w, w
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Finite groups used as family symmetries

2-dim irreps of T':
Idea: Suppose D(P) is an irrep with dimension d > 1 =
Two obvious ways for constructing further irreps of dimension d
Suppose D) (o =1,...,r) lists all 1-dim irreps =
irreps of dim d are obtained by
0 g — D1 (g) x DB)(g)
0 g — DH)(g) x (DW(g))"
Method 1 works with 2 of T":

2 UA — UA, UR — wUR
2" Up— Uax, Ug — w?Ug

Note:
T 2==2*
Ay 17©3=21"93=3!
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Character tables and tensor products

Functions on G:
Unitary space with scalar product (fi|f2) = ﬁ > gec 1 (8)f(g)

D(®) jrreps of G with dimensions dn =

_ ordG
Z D:S'a)(g I)D/(dﬁ)(g) = 0030k 0il
geiG «
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Character tables and tensor products

Functions on G:
Unitary space with scalar product (fi|f2) = ﬁ > gec 1 (8)f(g)

D(®) jrreps of G with dimensions dn =

_ ordG
3" Die DY (g) = da@djidi

geG

Note:
Theorem follows from Schur's Iemma

Unitary irrep = D ( 1) = (D@)(g)"); = (D) (g);)*
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Character tables and tensor products

Schur's lemma:
@ D irrep on V, A linear operator on V such that AD = DA
=Ax1

© Two non-equivalent irreps
DM acting on Vi, D@ acting on Vs,
A: Vi — V5 such that ADM) = DA = A=0
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Character tables and tensor products

Proof of theorem:

Part 1: D irrep on V with dimension d

A= cc D(hY)BD(h) with B arbitrary linear operator on V
= AD(g) =D(g)AVge G=A=)1

Choose B;j = (5,';(51'/

Apg = MKl)opg = Xpec D(h)pk D(h)1g

Computation of A\(k/) by summation over p = g:

/\(k/)d = Zh (5kl = ordGék/ =

ZheG D(h_l)ka(h)/q = (ordG /d) dpqdu I

Part 2: B: V1 — V; arbitrary = A= 3", - D@ (h=1)BDW(h)
fulfills AD®) = D@A = A= 0 etc. Q.E.D.
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Character tables and tensor products

Definition

Character of an irrep:

(a) . G — C
X g = xO)(g) = TrD@(g)
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Character tables and tensor products

Definition

Character of an irrep:

(a) . G — C
X g = xO)(g) = TrD@(g)

Properties of characters:
0 The character x(®) is constant on every class C, =
denote value of character by xia) on Cy
0 x®(e) = d,
[ Let cx be the number of elements in class C;, =
orthogonality relation

n
Z Ck (Xg(a)) Xiﬁ) = 0qgordG
k=1
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Character tables and tensor products

Proof of orthogonality relation:

o N ordG
> (D)(g);0) Di)(g) = 7 asdidi
geG @

i =j, k=1, summation over i, k =

« * ordG
>0 V(€) X (g) = = Sap do = 0rdG b
getG @

Sum over g € G ~~ sum over classes Q.E.D.
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Character tables and tensor products

Proof of orthogonality relation:

o N ordG
> (D)(g);0) Di)(g) = 7 asdidi
geG @

i =j, k=1, summation over i, k =

« * ordG
>0 V(€) X (g) = = Sap do = 0rdG b
getG @

Sum over g € G ~~ sum over classes Q.E.D.

Remarks: n = # classes

ON system ( = Xga), i o Xg,a)) = Nipreps < n

Proof that N eps > n needs different technique
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Character tables and tensor products

Characters and reducible representations:

D reducible representation, D@ occurs n, times in D
= multiplicity of D(*) in D given by n, = (x{®|xp)
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Character tables and tensor products

Characters and reducible representations:

D reducible representation, D@ occurs n, times in D

= multiplicity of D(*) in D given by n, = (x{®|xp)

Proof:

D(g) = D(’Y)(g) D P D(’Y)(g)@ D(é)(g) D D(é)(g)@...
n- summands ns summands

= xp = Y5 npx\? Q.E.D.

Application:

Characters allow e.g. to reduce D¥) @ D)
Motivation for character tables
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Character tables and tensor products

Example: regular representation

Basis of vector space given by all group elements
{g1,8,...,8n} with N = ordG

gigj = R(gi)«jgx = R(gi) is N x N permutation matrix
xr(e) =N, xr(g) =0Vg #e

(™ xr) = %Z )(8))"xr(8)

() (e)) xr(e)

xd, x N=d,

ZI'—‘ZIH
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Character tables and tensor products

Example: regular representation

Basis of vector space given by all group elements
{g1,8,...,8n} with N = ordG

gigj = R(gi)«jgx = R(gi) is N x N permutation matrix

xr(€) =N, xr(g) =0Vg #e

(X(a)‘XR):%Z )(8))"xr(8)

() (e)) xr(e)

xd, x N=d,

=2z~

D) occurs d, times in regular representation = Do d?2 =ordG J
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Character tables and tensor products

Character table:

n = number of irreps = number of classes
Classes Ci, cx = number of members of C,
ord (Cx) = order of elements of Cy

Irreps D(®), characters x(%)(g) = Tr (D% (g))

A = \(@)(g) with g € G

G G G - G
(# G) | (a) () - (cn)
ord(Cx) | ni Vo -+ U

o0 [T T

DO |\ B P
p(n) Xg”) Xg") .. ngn)
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Character tables and tensor products

Conventions: D) trivial 1-dim irrep = XE}) =1Vk
G ={e} =iV = da

First line and first column of character table

First line: 1 in all entries
First column: dimensions d,, of irreps

(1)
Xk
ON system orCéG : (k=1,...,n)
"
n
@\* . (a) _ ordG
azz:l(xk ) Xy = & Oke
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Character tables and tensor products

Character table of Dj:

Classes:

G ={1}, G ={-1}, G={xRs}, G ={£S}, G ={£RsS}
1-dim irreps 1(P9) : S — (=1)P, Ry — (~1)9

Note: —1 = R? = —1 — 1 in 1-dim irreps

Dy C1 C2 C3 C4 C5
#G) | (1) 1) 2 @ (2
ord(Cx) | 1 2 4 2 2

1(0.0) 1 1 1 1 1
1(1.0) 1 1 1 -1 -1
101 1 1 -1 1 -1
11 1 1 -1 -1 1

2 2 -2 0 0 0
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Character tables and tensor products

Example: 2 ® 2

y(2®2) = () x (D =4 4,0,0,0
(xX®|x222)) = L (2 x 44 (-2) x 4) =0
(X(l(p,Q))|X(2®2)) — %(]_ X441 x 4) =1

2 ® 2 — 1(070) fan 1(170) fan 1(071) fan 1(171)

Walter Grimus (University of Vienna) Theory of Neutrino Masses and Mixing



Character tables and tensor products

Character table of Ay:

Ay G G G G
(#CG) | (1) B) 4 ()
od(C)| 1 2 3 3
1 1 1 1 1
1 1 1 W w?
17 1 1 W w
3 3 -1 0 0

Example: y3®3) =3 x 3 =9 1, 0,0
(x®xC®3)) = L (3x9+3x(~1) x1) =2
(W XB23) = (1) B2)) = (1[5 323)) =
H(1x9+3x1x1)=1

33=191"01"9303
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Character tables and tensor products

Classes:

G = {e},

G ={(12)(34), (13)(24), (14)(23)},
G = {(132), (124), (234), (143)},
Gy = {(123), (142), (243), (134)}
Generators of 3:

1 0 0 010
(12)(38) A= 0 -1 0 |, (43)—E=[0 0 1
0 0 -1 100

1: A—-1 E—1
1: A-=1, E—uw?
17: A—=1 E—w
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Character tables and tensor products

Clebsch—Gordan coefficients for 3 ® 3 of A;:

1: eg®et+eo®e+e3kes
1: ee®e +uwler®e+we®es
17 Qe +we®e+wed® e
3: e Res, 3R e, e e;
ea®e, e e, aRe
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Character tables and tensor products

Character table of S;:
Classes: C; = {e}, Co = transposition (2-cycle),
(3 = two transpositions, (4 = 3-cycle, (5 = 4-cycle

54 C1 C2 C3 C4 C5

(# G) | (1) (6) (3) (8) (6)
od(Ce)| 1 2 2 3 4
1 1 1 1 1 1
1 1 -1 1 1 -1
2 2 0 2 -1 0
3 3 1 -1 0 -1
3 3 -1 -1 O 1
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Character tables and tensor products

@

12). (34) ~ ( | },):% SN
w 0

(234) < ) O

(1234) = (12)(234) — ( g “62 ) =¥ =0
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Character tables and tensor products

3® 3 of S;:
33=1920363
1: e1®et+e®e + e33R e3
2. { e1®e1+w2e2®e2+we3®e3
e ®e +we®e+wles®es
s (2@t ea®e)
(e3®e1—|—e1®e3)
(e1@e+e®e)
(2®e—e3®e)
( )
( )

3 aaR®e —e®es

S

Walter Grimus (University of Vienna) Theory of Neutrino Masses and Mixing



© Introduction

© Theory of finite groups

© Neutrino mass matrices

© Models of neutrino masses and lepton mixing

@ Conclusions

Walter Grimus (University of Vienna) Theory of Neutrino Masses and Mixing



Symmetries in the neutrino mass matrix

@ For the time being consider only lepton mass terms

@ Assume diagonal charged-lepton mass matrix

Choose unitary 3 x 3 matrix S
Consider following symmetries in Lyfaj:

Horizontal symmetry: | v, — Svg

Generalized CP symmetry: v, — iSCy}
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Symmetries in the neutrino mass matrix

@ For the time being consider only lepton mass terms

@ Assume diagonal charged-lepton mass matrix

Choose unitary 3 x 3 matrix S
Consider following symmetries in Lyfaj:

Horizontal symmetry: | v, — Svg

Generalized CP symmetry: v, — iSCy}

= STM,S=M,
= STM,S = M,
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Symmetries in the neutrino mass matrix

@ For the time being consider only lepton mass terms

@ Assume diagonal charged-lepton mass matrix

Choose unitary 3 x 3 matrix S
Consider following symmetries in Lyfaj:

Horizontal symmetry: | v, — Svg

Generalized CP symmetry: v, — iSCy}

= STM,S=M,
= STM,S = M,

/Vl = UrmUT
m (UTSU) = (UTSU)" A
m (UTSU*) = (UTSU*)™ i
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Symmetries in the neutrino mass matrix

W = (UTSU) W = (UTSU~)

m;Wj; = (Wj;)*m; (no summation) = m;|Wj;| = |Wjj|m;
= Wjj=0fori#j
Assume for simplicity: ms # 0

= UtSU=¢ or Su;j = €ju;
= UTSU* =¢ or Suj-‘ = €ju;

¢ = diag (€1, €2, €3) diagonal sign matrix
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Symmetries in the neutrino mass matrix

W = (UTSU) W = (UTSU~)

m;Wj; = (Wj;)*m; (no summation) = m;|Wj;| = |Wjj|m;
= Wjj=0fori#j
Assume for simplicity: ms # 0

= UtSU=¢ or Su;j = €ju;
= UTSU* =¢ or Su;-k = €ju;

¢ = diag (€1, €2, €3) diagonal sign matrix

Choice of class of matrices S: ‘“reflection”
y € C3 with [y1]? + [y2]? + [ys]* = 1

Sy=1-2yy|= Sy=—-y, Sy =+y foryly

Consequence for

Up to a phase factor, one of the uj in U identical with y

Walter Grimus (University of Vienna) Theory of Neutrino Masses and Mixing



U—T-symmetric neutrino mass matrix

1 0 1 00
y=— —]_ ~ Uus, 5: 0 0 1
V2 1 010
X y vy c12 s12 0 A
My=|y z w|, U=|-% 3% —1% e’
_S12 12 L
y w2 V2 V2 V2

In general, x,y,z,w € C

6-parameter mass matrix M, < mj 23, 012, B12
Predictions: 013 = 0°, f3 = 45°

(CKM phase 6 meaningless)
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Trimaximal neutrino mass matrix

1 1 1 1 -2 -2
y=—= 1 ~ U, Sy= -2 1 =2
V3 1 3 -2 -2 1
r—+s u v
M, = u r+v s with r,s,u,v e C
v 5 r+u

7-parameter mass matrix M,, = 2 predictions

2 _ 2 _ __1 L
U2l =1/3 = Siz = 3(-3) = 3

2 — 1_—25%3
|UM2| - 1/3 = Ll 2923 - 513 c055\/2—35123
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Tri-bimaximal lepton mixing

Harrison, Perkins, Scott (2002): TBM
Combine bimaximal and trimaximal =

2/v/6 1//3 0 A A
U= -1/v6 1/vV3 -1/v2 | e’ = Uupse”
-1/vV6 1/V/3  1/V2

Bimaximal: x+y =z+w

trimaximal: v =v

5-parameter mass matrix M, < mi 23, (812
Predictions: #1o = 35.26°, 0,3 = 45°, A13 = 0°
(CKM phase § meaningless)

Remark: Albright, Rodejohann (2008):
“trimaximal mixing” u1 = (u1)ups = 55 < 1/3
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CP-invariant neutrino mass matrix

Generalized CP transformation: v; — iS,Cv}

1 00 a r r*
S5=1001|=>M,= r s b r,seC, a,beR
010 r* b s*
Consequence for [ | with above S:
G icj
Ej:1:>Uj: d_, s Ej:—].:>Uj: d_,
i X

with ¢ € R, dj € C
= | |Uy| = |Uzrj| Vj = 1,2,3| Harrison, Scott (2002)
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CP-invariant neutrino mass matrix

5-parameter mass matrix M, < my 233, 012, 013
Predictions:

r’s* ¢ R = |0y = 45°, € = £i, e2P12 = +1

sin? 20,m = 4 |Uus)? (1 — [Uu3?) =1 — s}y

Remark: r?s* € R < sinfli3 =0 —
special case of p—r-symmetric M,,
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A 3-parameter neutrino mass matrix

Start with trimaximal mixing: w = 27//3
r—+s u v
M, = u r+v s
v s r+u

X+y+t zH+wlytwt z+wy+ it
= z—|—w2y—|—wt X—I—wy—i—w2t z+y+t
z+wy+w?t  z+y+t  x+wly+wt

Equivalent parameterizations! (r = x — z)
Apply generalized pu—1 CP symmetry = x,y,z,t € R

Assume t =0
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A 3-parameter neutrino mass matrix

3-parameter neutrino mass matrix:
Grimus, Lavoura (2008)

X+y z+w2y Z 4wy
M, =| z+w?y x+wy z4y , W
z+wy z4+y x+wly

=3 xy,zeR

3 parameters in M, < Am?2,,., Amé, 013
Predictions:

_ 1 0 17 a2i —
523—ﬁ, s’ —:l:l],- e iBr2 ==+1

512 = 3(1-53)
(amz,. Y 1M*
ot

352 (2—3s%

ms + mg + Arngtm = |:
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A 3-parameter neutrino mass matrix

0.6 7 —r —r
05 *\'\\‘\ - m+m+m, (inverted) m
L S --- m+m,+m, (normal) 1
04— N — ""min -
3 L RSN |
B= S
éoaf AN —
1S \\‘::"\.\ |
02 ST _

0.0001 0.001
|Uss

|2

my + my + m3 and ms as a function of \Ue3|2
Neutrino mass-squared differences at their mean values
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A 3-parameter neutrino mass matrix

0.10

My (&V)

(0] 0.01 0.02 0.‘032
Ul
Neutrinoless 33 decay: mgg as a function of |Ue3|2
Full lines: normal, dashed-dotted lines: inverted spectrum
Neutrino mass-squared differences at their mean values

0.04 0.05 0.06
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© Introduction

© Theory of finite groups

© Neutrino mass matrices

© Models of neutrino masses and lepton mixing

@ Conclusions
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Lagrangians and horizontal symmetries

Horizontal symmetry = family symmetry: Ggauge X Gramily
(Gtamily could also be gauged)

Kinetic and gauge terms in £ invariant under Ggamily
Effect of Gramily in Yukawa Lagrangian and scalar potential

Yukawa couplings connected with Clebsch—Gordan coefficients
of tensor product of fermion representations

Proliferation of scalar sector (+ additional fermion fields) vs.
predictions for masses and mixings

Walter Grimus (University of Vienna) Theory of Neutrino Masses and Mixing



Lagrangians and horizontal symmetries

Clebsch—Gordan coefficients vs. Yukawa couplings:

Tensor product: D ® D' = Ds @ --- with irreps D, D', Ds
Bases: D : {e,}, D' : {fy}, Ds: {bj =Tjapeq ® f3}
Transformations:

€q ™ Una €y, fﬁ — Dsafs, bi — (DS)JIbJ

Conditions on coefficient matrices I';:
ry = (D'r;0") (Ds);
Generic Yukawa couplings: C = charge conjugation matrix

Ly =yl C1japSitl + Hee.

v — Dy, D'—-Dy = S—-DLS, ~=I7 J

Yukawa couplings partially determined by Clebsch—Gordan
coefficients! = reduction of number of parameters
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Lagrangians and horizontal symmetries

Family symmetry groups in the Lagrangian:

Can a symmetry in M, be a remnant of a symmetry of a
complete model of the lepton sector?

What are the symmetries and multiplets of such a complete
model?

How can one achieve a charged-lepton mass matrix with
freedom for adjusting me ;, ,?

Fermion families 3-dimensional representations of
horizontal group G:

Abelian: all fermion multipletsin 11" ¢ 1”7
non-Abelian: 1 & 2 occurs

non-Abelian: 3 occurs
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Lagrangians and horizontal symmetries

Abelian group G:

Synonymous with “texture zeros' =

relations among observables

Grimus, Joshipura, Lavoura, Tanimoto (2004):

It is possible to enforce texture zeros in arbitrary entries of the
fermion mass matrices by means of Abelian symmetries and an
extended scalar sector

C. Low (2004):

Extremal mixing angles: only 613 = 0° can be enforced by Abelian
symmetries
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Lagrangians and horizontal symmetries

Non-Abelian symmetries:
1©2: G =D, with n >3 (D3 2 S3 = A(6)), 0(2),
double-valued groups D], with n > 2 (D} = Qs)

Possible to enforce | 813 = 0° and A3 = 45°

Groups with 3-dim irreps: A4, Sa, As
double-valued groups A} = T', S,
dihedral-like groups A(27), A(54)
Lie groups SO(3), SU(3)
Relations among entries of mass matrices =
non-Abelian groups
Clebsch—Gordan coefficients = Yukawa couplings
Avoiding extra Goldstone or gauge bosons from breaking of G
= finite groups
Extended scalar sector = problem of VEV alignment
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Seesaw mechanism

Minkowski (1977)

Yanagida; Glashow; Gell-Mann, Ramond, Slansky (1979)
SM + 3wvg + total lepton number violation

Remark: could also choose 2 or more than 3 vg

L = =Y [ZqujTrj + 5Rq3;fAj} Dy +H.c.
+ (3 vE CMpvg + hc) Mg = ME

1 1
My = — vil;, Mp=-— ViA;
L \/E;j J D \/EEJ:J j

Total Majorana mass matrix for left-handed v fields:
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Seesaw mechanism

Assumption: mp < mg (mp g scales of Mp Rr)
mp ~ Me, +, Mz 7

Seesaw mechanism:

Mass matrix of light neutrinos: | M, = —Mg;M,;ll\/lD

0 m, ~ m%/mR O

. . h
Mass matrix of heavy neutrinos: M, = Mg

Diagonalization: (Ug)IM,U} = iy, UT M, U, = i

Mixing matrix: | U = (U})TU,
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A model for bimaximal mixing

Grimus, Lavoura (2001, 2002)
Consider following framework:

SM + ny ¢ + 3vgr + soft L, breaking
Soft L, breaking by vg mass term J

Features of this framework:

Seesaw mechanism

Yukawa coupling matrices diagonal = M,, Mp diagonal
Soft breaking of lepton numbers at high scale
Mg only source of v mixing

vg mass term has dim 3 = soft L., » breaking
= renormalizable models
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A model for bimaximal mixing

Note: Mp, Mg pu—t symmetric < M, u—, i.e. invariant under
VulL <= VrL ~

Xy 'y
MI/: y z w
y w z
cos 6 sin @ 0
M, diagonal = U= —% Ci%e _%
_sinf cosf 1
V2 V2 V2

0 = 612 in general large but non-maximal, 623 maximal, Uez =0
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A model for bimaximal mixing

Realization of bimaximal mixing in soft-L-breaking framework:
SM with 3¢ + 3vg + non-abelian horizontal symmetry group

GH = U(]-)Le X U(]')Lu X U(]-)LT s Zz X Z,2
——

softly broken spont. breaking

T - DML < Dry, Vur <7 Vrr, UR < TR,
¢3 — —3

/.
Zz - ER /7 —E€R, Ve,urR — —Veu, R, (bl - _¢1

Non-abelian “kernel” of this group is O(2), could be replaced by
D, with n >3
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A model for bimaximal mixing

Ly = —y1Deiverdr — yo (Durvur + Driveg) 1
—y3Dererd1 — ya (Durpir + Dri7R) 62
—¥5 (Duepr — Dri7r) ¢3 + Hoc.

my = |yava + ysva|, m; = |yavo — y5v3]
_ 1 —1pp% =
Laj = 5 v MgCir +H.c.

Finetuning problem: m, < m,
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A model for bimaximal mixing

How the model functions:

< p—T symmetry Zp = Mp,,,, = Mp.,, Mg, M, p—-7 symmetric
— M, diagonal because of lepton numbers

— Auxiliary symmetry Z, = ¢» 3 do not couple to Dvgr

< 7o spontanously broken VEV of ¢3 = m, # m;

— Am2/Am?2, ~ 1/30 reproduced by by tuning

Non-decoupling in the scalar sector (neutral scalar vertices) for
mrp — 0 =

> Amplitudes of 4 — ey, Z — e ™, ... o< 1/m%

> Amplitude of, e.g., 4 — 3e constant, suppressed by product
of 4 Yukawa couplings, within exp. reach?
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A type | seesaw model with A,

Ay is smallest finite group (12 elements) with 3-dim irrep
Ma, Rajasekaran (2001) for lepton sector

(in quark sector Wyler (1979), Branco, Nilles, Rittenberg (1980))
Generators of 3:

1 0 O 010
0 0 -1 100
1. E—uw? A—1 11 E—w A—1 (w=e"/)

33=101¢1"¢3s3

1: eReteo®e+ea®es
1: e®@e +uw’er®e+we®es
17 eg®e +we e +we®es
3: e ®es, 3R e, e X ey;
ea®e, e ®e3, 2R e
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A type | seesaw model with A,

He, Keum, Volkas (2005)

fermion fields: /(rcl1®1 ®1”, D, vgre3
scalar fields: doublets ¢ € 3, ¢g € 1, real singlets y € 3

Ly — [m (D1 + Dordo + D313) lar
+ hy (Dy1¢1 + wDa 2 + w? D3 h3) Lo
+ h3 (D11¢1 + w?Dordn + wD31¢3) £3r
+ ho (

1LVIR + D2[_V2R + D3LV3R) qbo + H.C.]
|: ( C ViR + VzTRC_ll/zR + V3?;?C_1V3R> + HC:|
[ ( (VZRC V3R + Vg C™ V2R>
( 3RC V1R+V1RC V3R>
+ X3 (V1RC R + V3RC VlR)) + H.C.}
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A type | seesaw model with A,

Mass matrices: Mp = hgvwy1,

h1 Vl* h1 V; h1 Vék
My =1 hovi h2v2(,u2 h2v3w , Mr=1 hyws

h3 Vl* h3 V2 w h3 V3 w

Vacuum alignment:

hh 0 O
M=w=wn=v = M =3y 0 hy O Uj}
0 0 hs
M 0 M
W1:W3:O,hXWQEM,:>MR: 0O M O
M 0 M
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A type | seesaw model with A,

L (111 1/vV2 0 —1/V2
U{zuw—\7 1 w |, U= 0 1 0
3 1 w? w 1/\/§ 0 1/\/5

U= (Up)'U, = ULU, = diag (1, w?, w) Unps diag (1, 1, i)
Comments:

@ Tri-bimaximal mixing for the vacuum alignment shown on
previous slide

@ Vacuum alignment: possible if scalar potential is
CP-conserving

@ /g not in the same A4 multiplet as Dy, vg =
cannot be embedded into a GUT
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Some comments on A; models

Model with D;,/r € 3, type |l seesaw:
Altarelli, Fergulio (2005), Ma (2006)
Scalar sector:

gauge doublets (¢g, ¢1, ¢2, ¢3) €1 D3
gauge triplets (o, &1, &2, &3) €1@ 3

ho Vo hl V3 h2 Vo
M, = havs  hovo hivi
h1 Vo h2 Vi ho Vo

a d
M, = d a b
c b a

(#) = vj, (€D xa,....d
VEV alignment for TBM: |vi = w =v3, c =d =
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Some comments on A; models

1 1 1 1
U=Us=->2|1 w | with UM diagonal
V3 1 w? w
me = |h0V0 —+ (hl + h2)V|
m, = |h0V0 + (hlw + h2w2)v|
m; = |hovo + (hiw? + how)v|
1 0 v2 0
U, =— 1 0 -1
V2 1 0 1

Ul U, = Ugps diag (1,1, —i)
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Some comments on A; models

Remarks:

m VEV alignment and parameter finetuning
Altarelli, Feruglio, Hagedorn, ...
non-renormalizable terms, SUSY (new physics at TeV scale),
extra dimensions, ...

m Breaking of family group G to different subgroups in charged
lepton and neutrino sectors = TBM
Blum, Hagedorn, Lindner; Altarelli, Feruglio; ...
Charged lepton sector: Ay — Zs3(E) (cyclic permutations)
Neutrino sector: Ay — Zo(A),
additional Zj through 2 <= 3 symmetry

m |s S, the symmetry group for TBM? (Lam (2008))
Statement: S, C G
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Trimaximal mixing with 4 right-handed neutrino singlets

Construction of seesaw models with more than three vg
Grimus, Lavoura (2008)
1 Use more than three vg (4 or 5) for model building
[J Enforce diagonal charged-lepton mass matrix
[] Discussion of two cases:

0 Trimaximal mixing in M, with 3 parameters (four vg)
0 TBM mixing (five vg)
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Trimaximal mixing with 4 right-handed neutrino singlets

Charged-lepton sector:
Fermionic gauge multiplets:
doublets D, singlets ag and vor (= e, pu,7)

Family lepton number symmetries U,

= fermion bilinears D, ar
Simplest way to achieve different masses me ,, -
introduce Higgs doublet ¢, for each flavour

i Y, Darorga = ma = ly1val
a=e,l,T

Different charged-lepton masses by different VEVs!
Further symmetries of Yukawa couplings:

Flavour permutation symmetry S3

“Higgs doublet numbers” z,, : agp — —aR, ¢o — —da
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Trimaximal mixing with 4 right-handed neutrino singlets

Yukawa couplings of neutrino singlets:
Add Higgs doublet ¢¢9 — flavour singlet
Lepton family symmetries + permutation symmetry Ss:

¥2 Y Datvardo with o = imaj

a=e,l,T

Breaking of family symmetries:
In vg mass term = soft breaking by dimension 3
Ss-invariant mass term:

1 . _
EMO ZV;—RC 1Z/O¢R+
(6%

T -1 T -1 T -1
My (I/eRC vur T Vg C vrr + g C I/eR)
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Trimaximal mixing with 4 right-handed neutrino singlets

Seesaw mechanism:

Lo mass = (_ZjRMDVL + %V,—{,_C_]'MRVR) + H.c.
= %wZ—C_lMD_H\//wL + H.c.

0o MTI . v
Mp+m = < Mo Mg ) it = < Clom)T )

Mass matrix of light neutrinos: | M, = —MZ;MEII\/ID

Application to model construction:

MO Ml Ml B -
Mp=1 M1 Mo My |, Mpocls= U = Unps ‘c'rfe-
M, M, M, my = msz failure!
1 1 0
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Trimaximal mixing with 4 right-handed neutrino singlets

Addition of one right-handed neutrino singlet:
Reduce S3 to cyclic permutations (1,C,C?)
Additional vg singlet: C : vgr — wWiR

Complex scalar singlet: C: x — wy
1 1
5 vorC tvor X + EI\/I; (1/87,-; +w I/ZR + w? VTTR> C—l,/OR] +H.c.
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Trimaximal mixing with 4 right-handed neutrino singlets

Mo Ml Ml M2 a 00
| M My My WMy [0 a0

Mr = My, M My wM, Mo=119 0 5|
M, w2 My w M, MN 0 0 O

Seesaw formula =

X+y z—l—w2y zZ+wy
My,=| z+w?y x+wy z+y
Z+wy z+y x—|—w2y
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Trimaximal mixing with 4 right-handed neutrino singlets

X = _ Moy + M
(Mo — My) (Mg + 2M4)
_ 2 Ml
z = a
(Mo — My) (Mo + 2M4)
M2
y = —a2 2 5
My (Mo — My)

Seesaw mechanism: My 1o y of large seesaw scale
= v, of seesaw scale
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Trimaximal mixing with 4 right-handed neutrino singlets

Addition of generalized CP symmetry:
1 00
S5=1001
010

Dy — i5CDj, [(tr— iSyCly, vg—iSCvg, wvor— iCyyp
Qb - Syqb*) ¢0 - GbS, X — X*

CP transformation = y1, yo, yy, Mo, My, M € R
Trivial condition on scalar potential: v, real == My € R
= x,y,z € R = M, trimaximal 3-parameter mass matrix
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Trimaximal mixing with 4 right-handed neutrino singlets

dim of terms in L ‘ conserved symmetries

dim 4 CP, Z,, C, ULa
dim 2 CcpP

Remarks:
Eventually, all symmetries are broken spontaneously.
Spontaneous CP breaking < m,, # m;
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Trimaximal mixing with 4 right-handed neutrino singlets

Extension of the SM with 4 vg, 4 Higgs doublets,
one scalar singlet

Minimal number of Yukawa couplings
Me:my :my = |ve| : |vyu| o |vr]
Lepton mixing solely from vg mass matrix Mg
Chain of soft symmetry breaking
G =[(U(1) x U(1) x U(1)) x (Zy x Zp x )] x Z3
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TBM with 5 right-handed neutrino singlets

Modification of previous model: Addition of
neutrino singlets v1R, v2r and complex scalar singlet x
Keep full 53 in terms of dim 4 and 3 in L:
C: ViR — WUR, 2R — WPIHR, X — WX
lur: V1R < V2R, X < X*
|+ spontaneously broken with real VEV v,
(trivial condition in the scalar potential)
Note:

o X -~ w 0 0
2—d|m|rrep<X*>Of53=D3i <0 w2>’ (1

o

)
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TBM with 5 right-handed neutrino singlets

1 _ « _
52"'+§)’3 (XVlTRC Yir + X vagC 1V2R>

+M; |:I/17;?C_1 (VeR + wyur + w21/TR)
—1-1/27;?C_1 (VeR + w2VuR + wyTR)}
—I—MZZ/]?;?C_IVQR + -
MO My My Mo M
My My My WMy wM, 51
MR = Ml Ml MO wM2 w2M2 5 MD = < 3x3 >

M2 w2M2 wM2 MN M4 02X3
My  wM, w? M, My M;V

with My = y3vy, My = y3vy
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Seesaw mechanism: M, = —MEMEIMD =

xX+y+t zH+wlytwt z+wy+wit
M, =| z4+w?y+wt x+wy+w?t z+y+t
zHwy+w?t  z+y+t  x+wly+wt

y/t = vy/vy = [vy real & y = t] and
xX+2y z—y z—y
M, = z—y x—y z+4+2y = TBM
z—y z+2y x-—y

G=[(U(1) x U(1) x U(1)) x (Zp x Za X Z)] x S3
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Conclusions

Symmetries based on finite groups could be a way to tackle
the mass and mixing problem.

Models for lepton mixing (and neutrino masses?) require
complicated/contrived extensions of SM

Such models are in most cases incompatible with Grand
Unification

A route for such models, avoiding vacuum alignment, SUSY,
non-renormalizable terms, ..., could be an enlarged vg sector
(plus extended scalar sector)
o For the time being, bimaximal and tri-bimaximal mixing are
compatible with all experimental results.
o However, if 5123 ~ 0.01, then alternative ideas are needed.
o Or a degenerate v-mass spectrum = s% # 0 by RGE from
high (seesaw) scale to ew. scale.
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