Mauro Mezzetto

Istituto Nazionale di Fisica Nucleare, Sezione di Padova

"Future neutrino facilities and neutrino oscillation experiments."

- What is left to measure in neutrino oscillations
- Experimental challenges in detecting leptonic CP violation
- Super Beams
- Beta Beams
- Neutrino Factories
- Some Comparison.

Parameters of the Standard Model

Symbol	Description	Renormalization scheme (point)	Value	
m _e	Electron mass		511 keV	
m _μ	Muon mass		106 MeV	
m _t	Tauon mass		1.78 GeV	
m _u	Up quark mass	$\mu_{\overline{\text{MS}}} = 2 \text{ GeV}$	1.9 MeV	
m _d	Down quark mass	$\mu_{\overline{\rm MS}} = 2 { m GeV}$	4.4 MeV	
m _s	Strange quark mass	$\mu_{\overline{\rm MS}} = 2 { m GeV}$	87 MeV	
m _c	Charm quark mass	$\mu_{\overline{\text{MS}}} = m_c$	1.32 GeV	
m _b	Bottom quark mass	$\mu_{\overline{\text{MS}}} = m_{b}$	4.24 GeV	
m _t	Top quark mass	On-shell scheme	172.7 GeV	
θ_{12}	CKM 12-mixing angle		13.1°	
θ ₂₃	CKM 23-mixing angle		2.4°	
θ_{13}	CKM 13-mixing angle		0.2°	
δ	CKM CP-violating Phase		0.995	
g_1	U(1) gauge coupling	$\mu_{\overline{\text{MS}}} = m_{Z}$	0.357	
g ₂	SU(2) gauge coupling	$\mu_{\overline{\text{MS}}} = m_Z$	0.652	
g ₃	SU(3) gauge coupling	$\mu_{\overline{\text{MS}}} = m_{Z}$	1.221	
$\theta_{\rm QCD}$	QCD vacuum angle		~0	
μ	Higgs quadratic coupling		Unknown	
λ	Higgs self-coupling strength		Unknown	

Parameters added after neutrino oscillations

Parameters of the Standard Model

Symbol	Description	Renormalization scheme (point)	Value
m _e	Electron mass		511 keV
m _μ	Muon mass		106 MeV
m _t	Tauon mass		1.78 GeV
m _u	Up quark mass	$\mu_{\overline{\text{MS}}} = 2 \text{ GeV}$	1.9 MeV
m _d	Down quark mass	$\mu_{\overline{\rm MS}} = 2 { m GeV}$	4.4 MeV
m _s	Strange quark mass	$\mu_{\overline{\mathrm{MS}}} = 2 \ \mathrm{GeV}$	87 MeV
m _c	Charm quark mass	$\mu_{\overline{\text{MS}}} = m_c$	1.32 GeV
m _b	Bottom quark mass	$\mu_{\overline{\text{MS}}} = m_{b}$	4.24 GeV
m _t	Top quark mass	On-shell scheme	172.7 GeV
θ ₁₂	CKM 12-mixing angle		13.1°
θ ₂₃	CKM 23-mixing angle		2.4°
θ ₁₃	CKM 13-mixing angle		0.2°
δ	CKM CP-violating Phase		0.995
g_1	U(1) gauge coupling	$\mu_{\overline{\text{MS}}} = m_{Z}$	0.357
g ₂	SU(2) gauge coupling	$\mu_{\overline{\text{MS}}} = m_{Z}$	0.652
g ₃	SU(3) gauge coupling	$\mu_{\overline{\text{MS}}} = m_Z$	1.221
$\theta_{\rm QCD}$	QCD vacuum angle		~0
μ	Higgs quadratic coupling		Unknown
λ	Higgs self-coupling strength		Unknown

Leptons are VERY different from quarks. (I)

Solar+Atmospherics indicate a quasi bi-maximal mixing matrix, VERY DIFFERENT from CKM matrix (almost diagonal)!

$$U_{MNSP} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

 $\theta_{13} \to 0 \quad \Rightarrow \quad \mbox{The 3x3 mixing matrix becomes a trivial product of two 2x2 matrixes.}$

 θ_{13} drives $\nu_{\mu} \rightarrow \nu_{e}$ subleading transitions \Rightarrow the necessary milestone for any subsequent search: neutrino mass hierarchy and leptonic CP searches.

Mauro Mezzetto (INFN Padova)

Leptons are VERY different from quarks. (II)

How can the same model generate mass ratio so different?

A new physics scale, M, can explain the new hierarchy (if at the GUT scale) and is associated to the breaking of a global symmetry of the SM: total lepton number L.

Shopping list for future experiments

Status after this generation of LBL experiments: θ_{13}

Status after this generation of LBL experiments: CPV

Status after this generation of LBL experiments: CPV

Status after this generation of LBL experiments: CPV

Status after accelerator upgrades

From P. Huber et al., JHEP 0911:044,2009.

Prediction of sensitivity including a **fully optimized global run** (antineutrinos in T2K and NO ν A) and **full upgrade of the accelerators**: 1.6 MW at J-PARC and 2.4 MW at FNAL (Project-X)

Status after accelerator upgrades

From P. Huber et al., JHEP 0911:044,2009.

Prediction of sensitivity including a **fully optimized global run** (antineutrinos in T2K and NO ν A) and **full upgrade of the accelerators**: 1.6 MW at J-PARC and 2.4 MW at FNAL (Project-X)

()		,								_		
	Mass	Hieroroby discusser NH (35 CI)			CPV discovery NH (3g CL)							
1 0.8	GLoi Even a full upgrade of the accelerators and long optimized runs cannot guarantee a succesfull search of leptonic CP violation. New detectors, bigger more of one order of magnitude than the existings, are needed to achieve good sensitivities.											
<u>e</u>	-	Experimental possibilities										
Fraction of (true) δ_{c} 6. 90 9. 90	1		Technolo	gy	Dete	ctor	Mass	Since	Future	Mass	_	e]
	-						(kton)			(kton)		
	-		Water Cer	ren :	Super Kar	niokande	25	1996	HyperK	500	_	
	ł								(Memphys)			1
	Liquid Argon Liquid Scintillator		Liquid Arg	gon	lca	rus	0.5	2010	Glacier	100		1
			illator	Kam	land	1	2000	Lena	50			
	-)			Bore	xino	0.5	2006				
0.2			Iron Magne	tized	Mir	nos	5	2003	Mind	100		-
												la l
0			2 1	2021	20	19	0			2021		
Ŭ	0	0.02	0.04	0.06	0.08	0.1	ŬΟ	0.02	0.04	0.06	0.08	0.1
True value of $\sin^2 2\theta_{13}$				True value of $\sin^2 2\theta_{13}$								

Where to look for leptonic CP violation

Disappearance experiments, $\nu_x \to \nu_x$ are by definition T invariant. They can't violate CP if CPT holds.

We are left with $u_{\mu} \rightarrow
u_{\tau} \text{ or }
u_{\mu} \rightarrow
u_{e}$

As a first approximation the probability of transition P is linked to the amplitude A and the CP phase $\delta_{\rm CP}$ by:

 $P \propto A^2 + A \sin \delta_{
m CP}$

CP violation process probability over the CP non-violating probability:

$$\frac{CPV}{CPC} \simeq \frac{\sin \delta_{\rm CP}}{A}$$

• $\nu_{\mu} \rightarrow \nu_{\tau} \Rightarrow A \simeq 1$ and very challenging to detect (furthermore energy reconstruction of ν_{τ} events very poor since most of the energy goes into neutrinos)

• $\nu_{\mu} \rightarrow \nu_{e} \Rightarrow A \leq 0.1$.

These searches, at short baselines, had been already performed by BEBC, CHARM, CCFR, NOMAD.

At long baselines by K2K and MINOS.

Now used by T2K and soon by NO $\!\nu A$ to look for $\theta_{13}\,.$

Sub leading $u_{\mu} - u_{e}$ oscillations

$$\begin{split} p(\nu_{\mu} \to \nu_{e}) &= 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\frac{\Delta m_{13}^{2}L}{4E} \times \left[1 \pm \frac{2a}{\Delta m_{13}^{2}}(1 - 2s_{13}^{2})\right] \qquad \theta_{13} \text{ driv} \\ &+ 8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}\cos\delta - s_{12}s_{13}s_{23})\cos\frac{\Delta m_{23}^{2}L}{4E}\sin\frac{\Delta m_{13}^{2}L}{4E}\sin\frac{\Delta m_{12}^{2}L}{4E} \text{ CPert} \\ &\mp 8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\sin\delta\sin\frac{\Delta m_{23}^{2}L}{4E}\sin\frac{\Delta m_{13}^{2}L}{4E}\sin\frac{\Delta m_{12}^{2}L}{4E} \text{ CPodd} \\ &+ 4s_{12}^{2}c_{13}^{2}\{c_{13}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta\}\sin\frac{\Delta m_{12}^{2}L}{4E} \text{ solar driven} \\ &\mp 8c_{12}^{2}s_{13}^{2}s_{23}^{2}\cos\frac{\Delta m_{23}^{2}L}{4E}\sin\frac{\Delta m_{13}^{2}L}{4E}(1 - 2s_{13}^{2}) \text{ matter effect (CP odd)} \end{split}$$

 $\begin{array}{ll} \theta_{13} & {\rm discovery \ requires \ a} \\ {\rm signal} & \left(\infty & {\rm sin}^2 \, 2 \theta_{13} \right) \\ {\rm greater \ than \ the \ solar} \\ {\rm driven \ probability} \end{array}$

 $\begin{array}{l} \text{Leptonic CP discovery requires} \\ \textbf{A}_{CP} = \frac{P(\nu_{\mu} \rightarrow \nu_{e}) - P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})}{P(\nu_{\mu} \rightarrow \nu_{e}) + P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})} \neq 0 \end{array}$

Measuring Leptonic CP violation

LCPV asymmetry at the first oscillation maximum, $\delta = 1$, Error curve: dependence of the statistical+systematic (2%) computed for a beta beam the fixed energy $E_{IV} = 0.4$ GeV, L = 130 km.

Measuring Leptonic CP violation

LCPV asymmetry at the first oscillation maximum, $\delta~=~$ 1, Error

curve: dependence of the statistical+systematic (2%) computed for a

beta beam the fixed energy E_{ν} = 0.4 GeV, L = 130 km.

 The detection of such asymmetry is an evidence of Leptonic CP violation only in absence of competitive processes (i.e. matter effects, see following slides) ⇒ "short" Long Baseline experiments

Measuring Leptonic CP violation

LCPV asymmetry at the first oscillation maximum, $\delta~=~$ 1, Error

curve: dependence of the statistical+systematic (2%) computed for a

beta beam the fixed energy E_{ν} = 0.4 GeV, L = 130 km.

- The detection of such asymmetry is an evidence of Leptonic CP violation only in absence of competitive processes (i.e. matter effects, see following slides) ⇒ "short" Long Baseline experiments
- Statistics and systematics play different roles at different values of $\theta_{13} \Rightarrow$ impossible to optimize the experiment without a prior knowledge of θ_{13}
- Contrary to the common belief, the highest values of θ_{13} are not the easiest condition for LCPV discovery

Mauro Mezzetto (INFN Padova)

Measuring mass hierarchy

An internal degree of freedom of neutrino masses is the sign of Δm_{31}^2 : $\mathrm{sign}(\Delta m_{23}^2)$.

This parameter decides how mass eigenstates are coupled to flavor eigenstates with important consequencies to direct neutrino mass and double beta decay experiments.

$$P_{\theta_{13}} = \sin^2(2\theta_{13})\sin\theta_{23}^2\sin^2((\hat{A}-1)\hat{\Delta})/(\hat{A}-1)^2;$$

$$p_{\sin\delta} = \alpha \sin(2\theta_{13})\zeta \sin\delta \sin(L\hat{\Delta})\sin(\hat{A}\hat{\Delta})\sin((1-\hat{A})\hat{\Delta})/((1-\hat{A})\hat{A});$$

$$p_{\cos\delta} = \alpha \sin(2\theta_{13})\zeta \cos\delta \cos\hat{\Delta}\sin(\hat{A}\hat{\Delta})\sin(1-\hat{A}\hat{\Delta})/((1-\hat{A})\hat{A});$$

$$p_{\text{solar}} = \alpha^2\cos\theta_{23}^2\sin^22\theta_{12}\sin^2(\hat{A}\hat{\Delta})/\hat{A}^2;$$

$$\begin{split} \alpha &= \operatorname{Abs}(\Delta m_{21}^2 / \Delta m_{31}^2); \ \hat{\Delta} = \frac{\iota \Delta m_{31}^2}{4E} \zeta = \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \\ \hat{\boldsymbol{A}} &= \pm \boldsymbol{a} / \Delta m_{31}^2; \ \boldsymbol{a} = 7.6 \cdot 10^{-5} \rho \cdot E_{\nu} (\text{GeV}) \quad \rho = \text{matter density } (\text{g cm}^{-3}) \\ \text{The } \hat{\boldsymbol{A}} \text{ term changes sign with } \operatorname{sign}(\Delta m_{23}^2) \end{split}$$

Matter effects require long "long baselines"

$$\begin{aligned} P_{\theta_{13}} &= \sin^2(2\theta_{13})\sin\theta_{23}^2\sin^2((\hat{A}-1)\hat{\Delta})/(\hat{A}-1)^2;\\ p_{\sin\delta} &= \alpha\sin(2\theta_{13})\zeta\sin\delta\sin(L\hat{\Delta})\sin(\hat{A}\hat{\Delta})\sin(((1-\hat{A})\hat{\Delta})/(((1-\hat{A})\hat{A});\\ p_{\cos\delta} &= \alpha\sin(2\theta_{13})\zeta\cos\delta\cos\hat{\Delta}\sin(\hat{A}\hat{\Delta})\sin((1-\hat{A}\hat{\Delta})/(((1-\hat{A})\hat{A});\\ p_{\rm solar} &= \alpha^2\cos\theta_{23}^2\sin^22\theta_{12}\sin^2(\hat{A}\hat{\Delta})/\hat{A}^2; \end{aligned}$$

$$\begin{split} \alpha &= \operatorname{Abs}(\Delta m_{21}^2 / \Delta m_{31}^2); \ \hat{\Delta} = \frac{L \Delta m_{31}^2}{4E} \ \zeta = \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \\ \hat{\boldsymbol{A}} &= \pm \boldsymbol{a} / \Delta m_{31}^2; \ \boldsymbol{a} = 7.6 \cdot 10^{-5} \rho \cdot E_{\nu} (GeV) \quad \rho = \text{matter density } (\text{g cm}^{-3}) \\ \text{The } \hat{\boldsymbol{A}} \text{ term changes sign with } \operatorname{sign}(\Delta m_{23}^2) \end{split}$$

Matter effects require long "long baselines" $E_{ u} = 0.35 { m GeV} \ L \simeq 130 \ { m km}$

$$\begin{aligned} P_{\theta_{13}} &= \sin^2(2\theta_{13})\sin\theta_{23}^2\sin^2((\hat{A}-1)\hat{\Delta})/(\hat{A}-1)^2;\\ p_{\sin\delta} &= \alpha\sin(2\theta_{13})\zeta\sin\delta\sin(L\hat{\Delta})\sin(\hat{A}\hat{\Delta})\sin((1-\hat{A})\hat{\Delta})/((1-\hat{A})\hat{A});\\ p_{\cos\delta} &= \alpha\sin(2\theta_{13})\zeta\cos\delta\cos\hat{\Delta}\sin(\hat{A}\hat{\Delta})\sin(1-\hat{A}\hat{\Delta})/((1-\hat{A})\hat{A});\\ p_{\rm solar} &= \alpha^2\cos\theta_{23}^2\sin^22\theta_{12}\sin^2(\hat{A}\hat{\Delta})/\hat{A}^2; \end{aligned}$$

$$\begin{split} &\alpha = \operatorname{Abs}(\Delta m_{21}^2 / \Delta m_{31}^2); \ \hat{\Delta} = \frac{L \Delta m_{31}^2}{4E} \ \zeta = \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \\ &\hat{\boldsymbol{A}} = \pm \boldsymbol{a} / \Delta m_{31}^2; \ \boldsymbol{a} = 7.6 \cdot 10^{-5} \rho \cdot E_{\nu} (\text{GeV}) \quad \rho = \text{matter density } (\text{g cm}^{-3}) \\ &\text{The } \hat{\boldsymbol{A}} \text{ term changes sign with } \operatorname{sign}(\Delta m_{23}^2) \end{split}$$

$\begin{array}{l} \text{Matter effects require long "long baselines"}\\ E_{\nu}=0.35 \text{GeV} \ \textit{L}\simeq 130 \ \text{km} \quad E_{\nu}=1 \text{GeV} \ \textit{L}\simeq 500 \ \text{km} \end{array}$

$$\begin{aligned} P_{\theta_{13}} &= \sin^2(2\theta_{13})\sin\theta_{23}^2\sin^2((\hat{A}-1)\hat{\Delta})/(\hat{A}-1)^2;\\ p_{\sin\delta} &= \alpha\sin(2\theta_{13})\zeta\sin\delta\sin(L\hat{\Delta})\sin(\hat{A}\hat{\Delta})\sin((1-\hat{A})\hat{\Delta})/((1-\hat{A})\hat{A});\\ p_{\cos\delta} &= \alpha\sin(2\theta_{13})\zeta\cos\delta\cos\hat{\Delta}\sin(\hat{A}\hat{\Delta})\sin(1-\hat{A}\hat{\Delta})/((1-\hat{A})\hat{A});\\ p_{\rm solar} &= \alpha^2\cos\theta_{23}^2\sin^22\theta_{12}\sin^2(\hat{A}\hat{\Delta})/\hat{A}^2; \end{aligned}$$

$$\begin{split} &\alpha = \operatorname{Abs}(\Delta m_{21}^2 / \Delta m_{31}^2); \ \hat{\Delta} = \frac{L \Delta m_{31}^2}{4E} \ \zeta = \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \\ &\hat{\boldsymbol{A}} = \pm \boldsymbol{a} / \Delta m_{31}^2; \ \boldsymbol{a} = 7.6 \cdot 10^{-5} \rho \cdot E_{\nu} (\text{GeV}) \quad \rho = \text{matter density } (\text{g cm}^{-3}) \\ &\text{The } \hat{\boldsymbol{A}} \text{ term changes sign with } \operatorname{sign}(\Delta m_{23}^2) \end{split}$$

Matter effects require long "long baselines" $E_{\nu} = 0.35 \text{GeV} \ L \simeq 130 \text{ km}$ $E_{\nu} = 1 \text{ GeV} \ L \simeq 500 \text{ km}$ $E_{\nu} = 3 \text{ GeV} \ L \simeq 1500 \text{ km}$ (Probs in Vacuum (Magenta) and Matter (blue) (Probs in Vacuum (Magenta) and Matter (blue) {Probs in Vacuum (Magenta) and Matter (blue) } 0.04 0.025 0.02 0.02 0.015 0.02 0.01 0.01 0.01 0.005 0.005 1000^L 1000 1500 2000 2500 3000 L (km)

Experimental challenges

- Energy reconstruction
- Backgrounds
- Systematic errors
- Degeneracies

Energy reconstruction for beam neutrinos

The quasi elastic case

Select single ring events and assume they are Quasi Elastic

Single ring non Quasi Elastic are badly measured

bkg. for E, measurement

High energy part

bkg.for e-appearance

Goodness of energy reconstruction

Mauro Mezzetto (INFN Padova)

Migration Matrixes

A gaussian assumption for energy resolution is a too crude approximation

N.B. DIS event reconstruction requires to precisely measure the hadronic shower \rightarrow introducing again non-gaussianity of the energy resolution

Mauro Mezzetto (INFN Padova)

Future Long Baseline Experiments

Backgrounds

The ultimate limit for CPV and θ_{13} sensitivity are background rates and systematic errors.

In a Super Beam setup bacgkrounds come mainly from

- Intrinsic ν_e contamination: 0.5-1%
- π° produced by CC (the muon missed) and NC events. The rate depends from the quality of the detector.
- muons mis-identified as electrons. Again a detector background.

In leptonic CP violation searches the wrong helicity neutrino contamination is also an important source of backgrounds.

Beta Beams and Nufacts have no intrinsic backgrounds and the detector backgrounds are different. Discussed later.

Background events are dangerouse under many aspects:

- Reduce the statistical significance of the (tiny) signals
- Fuzzy the energy shape of the detected signals, which is an important signature
- Confuse the close detector making difficult to disentangle the single components.

Systematic errors

They could completely destroy leptonic CP violation sensitivity.

Default value are often 5% for SuperBeams, 2% for Neutrino Factory and 2-5% for Beta Beams.

Are

them realistic goals? Are close detectors powerful enough?

The general problem of close detectors in a SB experiment

SuperBeams

$$\begin{split} \mathbf{N}_{\mathrm{events}}^{\mathrm{far}} &= \left(\sigma_{\nu_{\mathrm{e}}} \epsilon_{\nu_{\mathrm{e}}} \mathbf{P}_{\nu_{\mu}\nu_{\mathrm{e}}} + \sigma_{\nu_{\mu}}^{\mathrm{NC}} \epsilon_{\mathrm{NC}} + \sigma_{\nu_{\mu}}^{\mathrm{CC}} \epsilon_{\mathrm{CC}} \mathbf{P}_{\nu_{\mu}\nu_{\mu}}\right) \phi_{\nu_{\mu}} + \sigma_{\nu_{\mathrm{e}}}^{\mathrm{CC}} \epsilon_{\nu_{\mathrm{e}}} \phi_{\nu_{\mathrm{e}}} \\ \mathbf{N}_{\mathrm{events}}^{\mathrm{close}} &= \left(\sigma_{\nu_{\mu}}^{\mathrm{NC}} \epsilon_{\mathrm{NC}}' + \sigma_{\nu_{\mu}}^{\mathrm{CC}} \epsilon_{\mathrm{CC}}'\right) \phi_{\nu_{\mu}}' + \sigma_{\nu_{\mathrm{e}}}^{\mathrm{CC}} \epsilon_{\nu_{\mathrm{e}}} \phi_{\nu_{\mathrm{e}}}' \end{split}$$

- $\bullet\,$ The close detector measures the product of fluxes $\times\,$ cross section $\times\,$ efficiency
- Reduced ν_e flux: small statistics to determine the cross section
- NC backgrounds must be separated from beam ν_e .

Beta Beams

$$\begin{split} \mathbf{N}_{\mathrm{events}}^{\mathrm{far}} &= \left(\sigma_{\nu_{\mu}} \epsilon_{\nu_{\mu}} \mathbf{P}_{\nu_{e}\nu_{\mu}} + \sigma_{\nu_{e}}^{\mathrm{NC}} \epsilon_{\mathrm{NC}} + \sigma_{\nu_{e}}^{\mathrm{CC}} \epsilon_{\mathrm{CC}} \mathbf{P}_{\nu_{e}\nu_{e}}\right) \phi_{\nu_{e}} \\ \mathbf{N}_{\mathrm{events}}^{\mathrm{close}} &= \left(\sigma_{\nu_{e}}^{\mathrm{NC}} \epsilon_{\mathrm{NC}}' + \sigma_{\nu_{e}}^{\mathrm{CC}} \epsilon_{\mathrm{CC}}'\right) \phi_{\nu_{e}} \end{split}$$

Flux known at priori, no intrinsic contamination (direct measure of NC backgrounds), no problems with the close-far extrapolation BUT no events to measure signal (ν_{μ}) cross sections.

Systematic errors and their pulls

RED: Systematic error switched off. BLUE: Systematic error multiplied by 5

Mauro Mezzetto (INFN Padova)

θ_{13} vs. luminosity

Allowed θ_{13} regions

Disappearance channel is taken into consideration, in case of T2K anyway it is not enough to eliminate the sizable decrease of sensitivity once the errors on the other oscillation parameters are taken into account. In T2HK the effect almost disappears

3 σ LCPV Sensitivity

Systematic errors, statistics in the close detector

Comparison with the effective FD description

The 2 km close detector implementation is equivalent to overall systematic errors of 10% on signal and 3.5% on backgrounds.

How to extract $heta_{13}$ and δ_{CP}

The problem is not that simple

- The 3 ν oscillation formula contains all the mixing matrix parameters and Δm². The parameters already measured do have errors that will influence the extraction of the unknown parameters.
- Several parameters still unknown: θ_{13} , $\delta_{\rm CP}$, sign (Δm^2) (hierarchy), the octant of θ_{23} . Different combinations of the above unknowns can fit the same data: \Rightarrow **The eightfold degeneracy**

The π -transit problem

From Huber, Lindner, Winter, Nucl. Phys B645:3-48, 2002 The sign(Δm_{23}^2)degenerate solution could show up at $\delta_{\rm CP} = \pi$ destroying any CPV sensitivity. Its position is function of θ_{13} and depends from the baseline.

Degeneracies (cont.)

To solve degeneracies:

- A single experiment, single channel, can't get rid of degeneracies.
- The combination of different channels in the same detector can solve degeneracies, i.e. first a second oscillation maxima measurement in LBNE or at Okinoshima.
- Different signals in the same detector can also do the job, i.e. beta beams and atmospheric neutrinos.
- A third possibility is to combine the information of different detectors along the same neutrino beam, as exploited by several proposed neutrino factory configurations.
- Of course the combination of the above combinations can also measure all the unknown parameters: can we define an optimal strategy?

At 130 km matter effects are negligible. $\hat{\epsilon}$ Inverse hierarchy solutions are very similar to direct hierarchy (changing sign of $\delta_{\rm CP}$ is equivalent of change of ${\rm sign}(\Delta m_{23}^2){\rm sign}) \Rightarrow$ No degeneracies for CP searches but no sensitivity on mass hierarchy.

At 130 km matter effects are negligible. $\overleftarrow{\epsilon}$ Inverse hierarchy solutions are very similar to direct hierarchy (changing sign of $\delta_{\rm CP}$ is equivalent of change of ${\rm sign}(\Delta m_{23}^2){\rm sign}) \Rightarrow$ No degeneracies for CP searches but no sensitivity on mass hierarchy.

Note however as the normal hierarchy $\delta_{\rm CP} = 0$ probability is very similar to inverse hierarchy $\delta_{\rm CP} = \pi/2$, \Rightarrow very difficult to experimentally disentangle the two.

The synergy with atmospheric neutrinos

P. Huber et al., Phys. Rev. D 71, 053006 (2005): Combining Long Baseline data with atmospheric neutrinos (that come for free in the megaton detector):

- \bullet Degeneracies can be canceled, allowing for better performances in $\theta_{13} \, {\rm and} \, {\rm LCPV}$ searches
- The neutrino mass hierarchy can be measured
- The θ_{23} octant can be determined.

The main reasons are:

- Octant e-like events in the Sub-GeV data is $\propto \cos^2 \theta_{23}$
- **Sign** e-like events in the Multi-GeV data, thanks to matter effects, especially for zenith angles corresponding to neutrino trajectories crossing the mantle and core where a resonantly enhancement occurs.

NOTE: LBL and atmospherics are a true synergy. They add to each other much more that a simple gain in statistics. Atmospherics alone could not measure the hierarchy, the octant, θ_{13} and LCPV. While the Beta Beam at short baselines could not measure the hierarchy as well as the octant.

What should be done:

- Describe the experiment: fluxes, signal efficiencies, backgrounds.
- Describe the cross sections.
- Take care of systematic errors
- Take care of known parameter errors
- Manage several complicated 3 ν formulas $(P(\nu_{\mu} \rightarrow \nu_{\mu}), P(\nu_{e} \rightarrow \nu_{e}), P(\nu_{\mu} \rightarrow \nu_{e}), etc.)$
- Manage matter effects with the correct matter densities in the earth.
- Multi parameters fit and search for different solutions for the fit
- Combine different experimental results

Happily enough a powerful open source tool has been developed: Globes. http://www.mpi-hd.mpg.de/personalhomes/globes/

95% CL allowed regions. $H^{\alpha_1,\alpha_2}(O^{\alpha_1,\alpha_2})$ refers to solutions with the true/wrong mass hierarchy (octant of θ_{23}). The true parameter values are $\delta_{\rm CP} = -0.85\pi$, $\sin^2 2\theta_{13} = 0.03$, $\sin^2 \theta_{23} = 0.6$. The running time is $(2\nu + 8\bar{\nu})$ yrs.

95% CL allowed regions. $H^{tr/wr}(O^{tr/wr})$ refers to solutions with the true/wrong mass hierarchy (octant of θ_{23}). The true parameter values are $\delta_{CP} = -0.85\pi$, $\sin^2 2\theta_{13} = 0.03$, $\sin^2 \theta_{23} = 0.6$. The running time is $(2\nu + 8\bar{\nu})$ yrs.

95% CL allowed regions. $H^{tr/wr}(O^{tr/wr})$ refers to solutions with the true/wrong mass hierarchy (octant of θ_{23}). The true parameter values are $\delta_{CP} = -0.85\pi$, $\sin^2 2\theta_{13} = 0.03$, $\sin^2 \theta_{23} = 0.6$. The running time is $(2\nu + 8\bar{\nu})$ yrs.

95% CL allowed regions. $H^{tr/wr}(O^{tr/wr})$ refers to solutions with the true/wrong mass hierarchy (octant of θ_{23}). The true parameter values are $\delta_{CP} = -0.85\pi$, $\sin^2 2\theta_{13} = 0.03$, $\sin^2 \theta_{23} = 0.6$. The running time is $(2\nu + 8\bar{\nu})$ yrs.

95% CL allowed regions. $H^{tr/wr}(O^{tr/wr})$ refers to solutions with the true/wrong mass hierarchy (octant of θ_{23}). The true parameter values are $\delta_{CP} = -0.85\pi$, $\sin^2 2\theta_{13} = 0.03$, $\sin^2 \theta_{23} = 0.6$. The running time is $(2\nu + 8\bar{\nu})$ yrs.

95% CL allowed regions. $H^{tr/wr}(O^{tr/wr})$ refers to solutions with the true/wrong mass hierarchy (octant of θ_{23}). The true parameter values are $\delta_{CP} = -0.85\pi$, $\sin^2 2\theta_{13} = 0.03$, $\sin^2 \theta_{23} = 0.6$. The running time is $(2\nu + 8\bar{\nu})$ yrs.

Setups

We have discussed and maybe understood the following points:

- The importance of leptonic CP violation and mass hierarchy
- The process with which perform these searches
- The experimental problems
- The different strategies
- Let's discuss about the possible setups:
 - Super Beams
 - Beta Beams
 - Neutrino Factories

A very simple approach:

- Push accelerators power to their ultimate limits
- Push detectors size to their ultimate limits

A very simple approach:

- Push accelerators power to their ultimate limits
- Push detectors size to their ultimate limits

This should bring to the factor 100 in neutrino statistics that is roughly needed to bring the T2K sensitivity to the level of sensitive discovery potential of leptonic CP violation.

The SuperBeam way

$T2K \Rightarrow T2HK$ or T2KK or T2OK.

$NO\nu A \Rightarrow$ **Super** $NO\nu A$ (abandoned)

Wide band beam fired from Fermilab to a gigantic water Cerenkov detector at Dusel (LBNE).

 $CNGS \Rightarrow$ off-axis CNGS fired on a gigantic liquid argon detector (almost abandoned for what concerns CPV: CNGS cannot scaled up in intensity)

CERN-SPL (HP-SPL R&D still funded at CERN)

PS2-Slanic CERN-PS2 SuperBeam fired to 100 kton LAr detector at Slanic, as computed by A. Rubbia, arXiv:1003.1921. (PS2 recently abandoned by CERN)

Partial list of challenges of high intensity proton beam

Neutrino beam line with MW protons

•Shock wave

•Graphite for target and dump core

•Heat generation

•Various sources including dE/dX

•magnets and their power water cooling

•Target Horn TS-DV-BD wall /BD core water cooling

•Radioactive water and air

•radioactive water (must be diluted to dispose)

 \Rightarrow many tanks, ion exchange filter, backup loop

 \Rightarrow radioactive He (must be diluted to dispose)

 \Rightarrow Production cross section of Tritium in He is 1/10 of air \Rightarrow He vessel First high enrgy MW fast-ext'ed beam !

3.3E14 ppp w/ 5µs pulse cm When this beam hits an iron block,

radiation > 1000Sv/h

Residual

Material heavier than Ti might be destroyed.

MR & Neutrino beam facility operation :

- ~0.05 MW continuous operation
 - \rightarrow next step is beyond 0.1MW toward 0.75MW after this summer shut down
- beam loss control is in progress toward high power operation

Mauro Mezzetto (INFN Padova)

Future Long Baseline Experiments

MR Power Improvement Scenario

Increase rep. rate and/or increase # of protons toward high power (~1.66MW)

Fermilab and Project X

- Current configuration:
 - >2 MW at 60-120 GeV, simultaneous with 3 MW at 3 GeV
 - Flexibility for supporting multiple experiments
 - CW linac is unique for this application, and offers capabilities that would be hard/impossible to duplicate in a synchrotron
- Project X could be constructed over the period ~2015 2019

CERN and LHC upgrades

Present accelerator complex

Various POSSIBLE scenarios

CERN and LHC upgrades

Present accelerator complex

Various POSSIBLE scenarios

The Memphys detector (hep-ex/0607026)

In the middle of the Frejus tunnel at a depth of 4800 m.w.e a preliminary investigation shows the feasibility to excavate up to five shafts of about 250,000 m³ each ($\Phi = 65 m$, full height=80 m).

Fiducial of 3 shafts: 440 kton.

30% coverage by using 12" PMT's from Photonis, 81k per shaft (with the same photostatistics of SuperKamiokande with 40% coverage)

Hyper-Kamiokande

- Total 1Mton (FV 540kt)
- Site study is on-going at Tochibora mine in Kamioka
- Design report is under preparation

LBNE: Water Cherenkov Detector

Long-Baseline Neutrino Experiment

http://lbne.fnal.gov/

- Project started in 2008
- DUSEL at Homestake
- Total 300kt water (or more)
- A large water Cherenkov detector and a large liquid-argon detector are under study

http://www-rccn.icrr.u-tokyo.ac.jp/workshop/NNN07/Oct5/01-suzuki-TITAND.pdf

- ~1000m depth, under the sea
- FV 5Mt (85m x 85m x 105m, 9units)
- Energy threshold: several MEV

Giant (~100kt) Liquid Argon TPC

- Using recent technologies, we can obtain fine event information as a "bubble chamber image" with high rate.
- 3D tracking detector
 - We can obtain precise geometrical event information.
 - Very low energy particles can be measured.
- Local energy loss with mm level can be obtained.
 - > Range and dE/dx are quite useful for particle ID.
- Total absorption, all fiducial, homogeneous calorimeter.
- Good e/π^0 separation.
- Good energy reconstruction

ICARUS T600 in LNGS Hall B

Neu2010

•Commissioning concluded, now in data taking with neutrino events from CERN. (~1000ev /year for CNGS v using ~500t detector)

CNGS neutrino beam direction

Concept of the LAr TPC

- Ionization electron signal
 - → ~5x10⁴e/cm MIP
 - 3D track reconstruction as a TPC
 - → drift velocity is ~mm/µs with ~kV/cm electric field
 - LAr purity affects the attenuation of the drift electrons.
 - No amplification inside LAr
 - Diffusion of the drift electrons is about 3mm after 20m drift

One candidate in Japan

Image of ~100kt LAr and important R&D components

ICARUS T300 Prototype

Readout electronics

View of the inner detector

a standing and the standing of the standing of

Manningan

.....

COMMENTER OF THE OWNER OWNER OF THE OWNER OWNE OWNER OWN

Wires of the TPC

PMT

Drift Length (1.5 m)

Cathode

Wire Chamber Structure

> Field Shaping Electrodes (during installation)
Proposed Strategy @ Fermilab

Evolution of the Liquid Argon Physics Program

LAr experiment prototyping

To solve technical challenges posed by Giant Liquid Argon Experiment

3 lt @ CERN, 10 lt @ KEK

small test setups for readout method development, electronics

0.4 ton LAr, vacuum, cryogenic system, gas purging, argon liquefaction, optimized for test beam

ArDM (RE18) @ CERN

J.Phys.Conf.Ser.39:129-132,2006 1 ton LAr, large area readout, 1m drift with Cockroft-Walton, LAr recirculation and purification, electronics, safety, optimized for dark matter searches

Drawings of 250L

Laguna

A coordinated European effort aimed towards conceptual designs for European large underground detectors.Physics focus: proton decay, low energy neutrino astronomy, long baseline neutrino beam. Funded as a EU FP7 design study. Three detection techniques are investigated:

- $\bullet\,$ Water Cerenkov imaging, \sim 500 kton, with synergy with HK (Japan) and UNO (USA).
- Liquid argon time-projection chamber, \sim 100 kton. Technology pioneered in Europe by the ICARUS R&D programme.
- $\bullet\,$ Liquid scintillator, \sim 50 kton connected to Borexino R&D programme

Feasibility studies for site excavation are mandatory to build the required infrastructure ho host these very large detectors, also under contriled cost boundaries.

SuperBeams - J-PARC phase 2 (T2HK)

Upgrade the proton driver from 0.75 MW to 4 MW Upgrade SuperKamiokande by a factor $\sim 20 \implies$ HyperKamiokande Both upgrades are necessary to address leptonic CP searches.

The detector would have valuable physics potential in proton decay, SN neutrinos, solar neutrinos. Its cost: ~ 0.5 G\$

Systematics at 2% are difficult 4 MW at 50 GeV/c are difficult Targetry and optics at 4 MW are difficult and will probably require some compromise

sin δ

FNAL possibilities

South Dakota

NSF's proposed North Dakota **Underground Lab.** DUSEL

Lead, SD .

~300 kton Water Cerenkov

owa ~50 kton Liquid Ar TPC Combination of WC and LA

1300 km

700kW 15.7 m 15kt Liquid Scintillator Under construction

67 m

735 km 810 km 5 msec sconsin

Milw

Minnesota

NOvA

ini **SciBooNE** MINOS **NOvA** IINERvA MicroBooNE Project X: ~2 MW

Illino

FNAL-DUSEL potential

Sensitivity to CPV and Hierarchy

SuperBeams - SPL u beam at CERN

- A 3.5 GeV, 4MW Linac: the SPL.
- A liquid mercury target station capable to manage the 4 MW proton beam. R&D required.
- A conventional neutrino beam optics capable to survive to the beam power, the radiation and the mercury. Already prototyped.
- Up to here is the first stage of a neutrino factory complex.
- A sophisticated close detector to measure at 2% signal and backgrounds.
- A megaton class detector under the Frejus, L=130 km: Memphys.

PS2 Super Beams

A. Rubbia: arXiv.1003.1921

Assume 2 MW from a 50 GeV PS2.

An on-axis wide band neutrino beam.

Three possible sites: Sieroszowice at 950 km, Slanic at 1544 km or Pyhasalmi at 2300 km. A 100 kton liquid argon detector capable of measuring neutrino oscillations at both the first and second oscillation maxima with optimal performance on reconstruction of neutrino energy and background rejection.

Leptonic CP violation sensitivity of Super Beams

Mauro Mezzetto (INFN Padova)

In a **conventional neutrino beam**, neutrinos are produced SECONDARY particle decays (mostly pions and kaons).

Given the short life time of the pions $(2.6 \cdot 10^{-8}s)$, they can only be focused (and charge selected) by means of magnetic horns. Then they are let to decay in a decay tunnel, short enough to prevent most of the muon decays.

- Besides the main component (ν_{μ}) at least 3 other neutrino flavors are present $(\overline{\nu}_{\mu}, \nu_{e}, \overline{\nu}_{e})$, generated by wrong sign pions, kaons and muon decays. ν_{e} contamination is a background for θ_{13} and δ , $\overline{\nu}_{\mu}$ contamination dilutes any CP asymmetry.
- Hard to predict the details of the neutrino beam starting from the primary proton beam, the problems being on the secondary particle production side.

Collect, focus and accelerate the neutrino parents at a given energy. This is impossible within the pion lifetime, but can be tempted within the muon lifetime (Neutrino Factories) or within some radioactive ion lifetime (Beta Beams):

- Just one flavor in the beam
- Energy shape defined by just two parameters: the endpoint energy of the beta decay and the γ of the parent ion.
- Flux normalization given by the number of ions circulating in the decay ring.
- Beam divergence given by γ .

The full ${}^{6}\mbox{He}$ flux MonteCarlo code

```
Function Flux(E)
Data Endp/3.5078/
Data Decays /2.9E18/
ye=me/EndP
c ...For ge(ye) see hep-ph0312068
ge=0.0300615
2gE0=2*gamma*EndP
c ... Kinematical Limits
If (E.gt.(1-ye)*2gE0)THEN
Flux=0.
Return
Endif
c ...Here is the Flux
flux=Decays*gamma*=2/(pi*L**2*ge)*(E**2*(2gE0-E
+ 2gE0*44*Sqrt((1-E/2gE0)**2-ye**2)
```

Return

Distinctive features of Beta Beams

... limitations not so well advertized ...

- Don't need a magnetized detector \Rightarrow make use of next generation megaton water Cerenkov detectors or 100 kton liquid argons.
- Can re-use part of the CERN accelerator complex (this can be seen as a limitation)
- Synergies with Nuclear Physics (share an intense radioactive ion source), SPL Super Beam (two neutrino beams in the same detector), atmospheric neutrinos (physics case of both beams greatly enhanced by this synergy).
- An evolving concept with several interesting possible upgrades.
- Not too far R&D needed.

M. Lindroos M. Mezzetto, "Beta Beams", Imperial College Press, 2009

Mauro Mezzetto (INFN Padova)

• ⁶He production rate is ~2x10¹³ ions/s (dc) for ~200 kW on target.

Beta-beam team

Possible β^{-} emitters (\bar{v}_{e})

lsotope	Ζ	Α	A/Z	T _{1/2}	Q _{β (gs>gs)}	$Q_{\beta \text{ eff.}}$	$E_{\beta av.}$	E _{v av.}	<e_lab>(MeV)</e_lab>
				S	MeV	MeV	MeV	MeV	(@ 450 GeV/p)
6He	2	6	3.0	0.807	3.5	3.5	1.57	1.94	582
8He	2	8	4.0	0.119	10.7	9.1	4.35	4.80	1079
8Li	3	8	2.7	0.838	16.0	13.0	6.24	6.72	2268
9Li	3	9	3.0	0.178	13.6	11.9	5.73	6.20	1860
11Be	4	11	2.8	13.81	11.5	9.8	4.65	5.11	1671
15C	6	15	2.5	2.449	9.8	6.4	2.87	3.55	1279
16C	6	16	2.7	0.747	8.0	4.5	2.05	2.46	830
16N	7	16	2.3	7.13	10.4	5.9	4.59	1.33	525
17N	7	17	2.4	4.173	8.7	3.8	1.71	2.10	779
18N	7	18	2.6	0.624	13.9	8.0	5.33	2.67	933
23Ne	10	23	2.3	37.24	4.4	4.2	1.90	2.31	904
25Ne	10	25	2.5	0.602	7.3	6.9	3.18	3.73	1344
25Na	11	25	2.3	59.1	3.8	3.4	1.51	1.90	750
26Na	11	26	2.4	1.072	9.3	7.2	3.34	3.81	1450

From P..Zucchelli talk at Nufact 03. Table compiled by U. Koster

Possible β^+ emitters (ν_e)

lsotope	Ζ	Α	A/Z	T _{1/2}	Q _{β (gs>gs)}	$Q_{\beta \text{ eff.}}$	$E_{\beta av.}$	E _{v av.}	<e_lab>(MeV)</e_lab>
				S	MeV	MeV	MeV	MeV	(@450 GeV/p)
8B	5	8	1.6	0.77	17.0	13.9	6.55	7.37	4145
10C	6	10	1.7	19.3	2.6	1.9	0.81	1.08	585
140	8	14	1.8	70.6	4.1	1.8	0.78	1.05	538
15O	8	15	1.9	122.2	1.7	1.7	0.74	1.00	479
18Ne	10	18	1.8	1.67	3.4	3.4	1.50	1.86	930
19Ne	10	19	1.9	17.34	2.2	2.2	0.96	1.25	594
21Na	11	21	1.9	22.49	2.5	2.5	1.10	1.41	662
33Ar	18	33	1.8	0.173	10.6	8.2	3.97	4.19	2058
34Ar	18	34	1.9	0.845	5.0	5.0	2.29	2.67	1270
35Ar	18	35	1.9	1.775	4.9	4.9	2.27	2.65	1227
37K	19	37	1.9	1.226	5.1	5.1	2.35	2.72	1259
80Rb	37	80	2.2	34	4.7	4.5	2.04	2.48	1031

From P..Zucchelli talk at Nufact 03. Table compiled by U. Koster

Exercise

Characterize a Beta Beam as function of γ and Q.

Take $^6\text{He},$ with end point energy Q=3.5 MeV. Discuss neutrino charged current rate of events as function of $\gamma,$ in the range 0 $<\gamma$ \leq 150, having the detector at the first oscillation maximum.

Keep $\gamma = 150$, what are the arguments in favour of a ion with Q bigger than ⁶He and those in favor of a smaller Q? Compare these results with a Neutrino Factory running at 20 GeV.

Some scaling laws in Beta Beams

	β^+ emitters		β^- emitters			
lon	Q_{eff} (MeV)	Z/A	lon	Q_{eff} (MeV)	Z/A	
¹⁸ Ne	3.30	5/9	⁶ He	3.508	1/3	
⁸ B	13.92	5/8	⁸ Li	12.96	3/8	

- Proton accelerators can accelerate ions up to $Z/A \times$ the proton energy.
- Lorentz boost: end point of neutrino energy $\Rightarrow 2\gamma Q$
- In the CM neutrinos are emitted isotropically \Rightarrow neutrino beam from accelerated ions gets more collimated $\propto \gamma^2$
- Merit factor for an experiment at the atmospheric oscillation maximum: $\mathcal{M} = \frac{\gamma}{0}$

- Ion lifetime must be:
 - As long as possible: to avoid ion decays during acceleration
 - As short as possible: to avoid to accumulate too many ions in the decay ring
 - \Rightarrow optimal window: lifetimes around 1 s.
- Decay ring length scales $\propto \gamma$, following the magnetic rigidity of the ions.
- Two body decay kinematics : going off-axis the neutrino energy changes (feature used in some ECB setup and in the low energy setup)

Boundary conditions:

- CERN SPS can accelerate ${}^{6}\text{He} \text{ up to } \gamma = 150 \Rightarrow E_{\nu} \simeq 0.5 \text{GeV}$ \Rightarrow baselines within 300 km.
- The only viable candidate to host a megaton detector is Frejus lab, 130 km away from CERN

Optimal γ : $\gamma = 100$.

This is the option studied by the Eurisol design study and now by the EuroNu design study

Experimental strategy

Beta Beam signal is ν_{μ} appearance.

To profit of the no-background beam, detector backgrounds should be taken at minimum:

- ν_e events mis-identified as ν_μ events
- Charged pions from NC and NC-like ν_e interactions mis-identified as muons.
- Atmospheric neutrinos

Atmospheric neutrino background

The only viable tool to keep them at a negligible rate is to keep very short the live time of the neutrino beam. This is a tight requirement for the Beta Beam accelerator complex.

Question: why atmospherics are not a great concern at T2K phase 1, that has much smaller signal neutrino fluxes?

Atmospheric neutrino background

Sub-GeV $\mu\text{-like}$ events in SK integrated over the solid angle. 45.3 kton year exposure

Sub-GeV μ -like events zenithal distribution

True-Reconstructed v direction

Kamioka to Frejus flux correction: + 20%

Signal efficiency with respect to standard SK algorithms: 54% (flat in energy)

A duty cycle of 1% would keep the atmospheric background rate below the pion bkg rate (Eurisol DS duty cycle: 0.45%).

Mauro Mezzetto (INFN Padova)

The cross sections problem

Neutrino cross-sections are poorly measured around 300 MeV.

Nuclear effects are very important at these energies. No surprise that different MonteCarlo codes predict rates with a 50% spread.

On the other hand: Beta Beam is the ideal place where to measure neutrino cross sections

- Neutrino flux and spectrum are completely defined by the parent ion characteristics and by the Lorentz boost γ.
- Just one neutrino flavour in the beam.
- You can scan different γ values starting from below the Δ production threshold.
- A close detector can then measure neutrino cross sections with unprecedent precision.

A systematic error ranging from 2% to 5% both in signal and backgrounds is used in the following

Neutrino Cross Sections

From: NOMAD Collaboration, Eur. Phys. J. C 63 (2009) 355 [arXiv:0812.4543 [hep-ex]].

Oscillation signals

1.0				,		
	f	BB	S	PL	T2HK	
	$\delta_{CP} = 0$	$\delta_{CP}=\pi/2$	$\delta_{CP} = 0$	$\delta_{CP}=\pi/2$	$\delta_{CP} = 0$	$\delta_{CP} = \pi/2$
appearance v background $sin^2 2\theta_{13} = 0$ $sin^2 2\theta_{13} = 10^{-3}$ $sin^2 2\theta_{13} = 10^{-2}$	1 2 66 285	13 24 76 314	6 93 387	600 41 10 126	1 181 754	1017 84 18 240
appearance \overline{v} background sin ² 2 $\theta_{13} = 0$ sin ² 2 $\theta_{13} = 10^{-3}$ sin ² 2 $\theta_{13} = 10^{-2}$	1 2 64 271	27 23 10 100	5 ; 74 297	500 36 104 390	1 188 746	1428 90 261 977

From J.E.Campagne, M. Maltoni, M.M., T.Schwetz, hep-ph/0603172, revised

Line width: 2% and 5% systematic errors.

Can the θ_{13} and LCPV searches be improved?

Two pathways explored so far. In order of comparison:

- Fire a conventional neutrino beam (the SPL-SuperBeam) to the same detector.
- Combine BB information with the atmospheric neutrinos that the megaton detector will record for free

P.S. Also ν_e disappearance could help in determining θ_{13} and in removing degeneracies (it's the same channel of reactor experiments). However it would help if systematic errors could be pushed below 0.5%. At present 2% seems to be the ultimate level of systematics for a Beta Beam. You should consider that is very unpractical to build a close detector IDENTICAL to the far detector.
The Beta Beam - SPL Super Beam synergy

MM, Nucl. Phys. Proc. Suppl. 149 (2005) 179.

Yearly Fluxes

A Beta Beam has the same energy spectrum than the SPL SuperBeams and consumes 5% of the SPL protons. The two beams could be fired to the same detector \Rightarrow LCPV searches through CP and T channels (with the possibility of using just neutrinos).

Access to CPTV direct searches.

Cross measurement of signal cross section in the close detectors

The synergy with atmospheric neutrinos

P. Huber et al., Phys. Rev. D 71, 053006 (2005): Combining Long Baseline data with atmospheric neutrinos (that come for free in the megaton detector):

- \bullet Degeneracies can be canceled, allowing for better performances in $\theta_{13} \, {\rm and} \, {\rm LCPV}$ searches
- The neutrino mass hierarchy can be measured
- The θ_{23} octant can be determined.

The main reasons are:

- Octant e-like events in the Sub-GeV data is $\propto \cos^2 \theta_{23}$
- **Sign** e-like events in the Multi-GeV data, thanks to matter effects, especially for zenith angles corresponding to neutrino trajectories crossing the mantle and core where a resonantly enhancement occurs.

NOTE: LBL and atmospherics are a true synergy. They add to each other much more that a simple gain in statistics. Atmospherics alone could not measure the hierarchy, the octant, θ_{13} and LCPV. While the Beta Beam at short baselines could not measure the hierarchy as well as the octant.

Updated sensitivities of SPL, BB and SPL+BB

• High energy Beta Beams $\gamma = 350$ Beta Beams at $L \simeq 700$ km outperform the Eurisol BB but

- High energy Beta Beams $\gamma = 350$ Beta Beams at $L \simeq 700$ km outperform the Eurisol BB but
 - They require a 1 TeV accelerator, at present not in the CERN plans.
 - Decay ring length $\propto \gamma,$ and a 3° slope needed \Rightarrow very expensive option
 - Ion lifetime $\propto \gamma,$ difficult if not impossible to store the needed ions in the decay ring with the present injection scheme.

- High energy Beta Beams $\gamma = 350$ Beta Beams at $L \simeq 700$ km outperform the Eurisol BB but
 - They require a 1 TeV accelerator, at present not in the CERN plans.
 - Decay ring length $\propto \gamma,$ and a 3° slope needed \Rightarrow very expensive option
 - Ion lifetime $\propto \gamma,$ difficult if not impossible to store the needed ions in the decay ring with the present injection scheme.
- High-Q Beta Beams: for the same γ higher ν energies \Rightarrow better mass hierarchy performances (alternatively smaller γ for the same baseline \Rightarrow shorter/cheaper decay ring)

- High energy Beta Beams $\gamma = 350$ Beta Beams at $L \simeq 700$ km outperform the Eurisol BB but
 - They require a 1 TeV accelerator, at present not in the CERN plans.
 - Decay ring length $\propto \gamma$, and a 3° slope needed \Rightarrow very expensive option
 - Ion lifetime $\propto \gamma,$ difficult if not impossible to store the needed ions in the decay ring with the present injection scheme.
- High-Q Beta Beams: for the same γ higher ν energies \Rightarrow better mass hierarchy performances (alternatively smaller γ for the same baseline \Rightarrow shorter/cheaper decay ring)
 - Merit factor $\propto 1/Q$, needs 3-4 times more ions to match the Eurisol BB θ_{13} and LCPV performances.
 - The injection ring proposed by C. Rubbia (C. Rubbia et al.,NIM A **568** (2006) 475), now actively studied in the EuroNu WP4 package, could match the ion production, but apparently the PS-SPS chain cannot digest all those ions.

- High energy Beta Beams $\gamma = 350$ Beta Beams at $L \simeq 700$ km outperform the Eurisol BB but
 - They require a 1 TeV accelerator, at present not in the CERN plans.
 - Decay ring length $\propto \gamma$, and a 3° slope needed \Rightarrow very expensive option
 - Ion lifetime $\propto \gamma,$ difficult if not impossible to store the needed ions in the decay ring with the present injection scheme.
- High-Q Beta Beams: for the same γ higher ν energies \Rightarrow better mass hierarchy performances (alternatively smaller γ for the same baseline \Rightarrow shorter/cheaper decay ring)
 - Merit factor $\propto 1/Q$, needs 3-4 times more ions to match the Eurisol BB θ_{13} and LCPV performances.
 - The injection ring proposed by C. Rubbia (C. Rubbia et al.,NIM A 568 (2006) 475), now actively studied in the EuroNu WP4 package, could match the ion production, but apparently the PS-SPS chain cannot digest all those ions.
- Electron capture Beta Beams: monochromatic neutrino beams, a very attractive option

- High energy Beta Beams $\gamma = 350$ Beta Beams at $L \simeq 700$ km outperform the Eurisol BB but
 - They require a 1 TeV accelerator, at present not in the CERN plans.
 - Decay ring length $\propto \gamma$, and a 3° slope needed \Rightarrow very expensive option
 - Ion lifetime $\propto\gamma,$ difficult if not impossible to store the needed ions in the decay ring with the present injection scheme.
- High-Q Beta Beams: for the same γ higher ν energies \Rightarrow better mass hierarchy performances (alternatively smaller γ for the same baseline \Rightarrow shorter/cheaper decay ring)
 - Merit factor $\propto 1/Q$, needs 3-4 times more ions to match the Eurisol BB θ_{13} and LCPV performances.
 - The injection ring proposed by C. Rubbia (C. Rubbia et al.,NIM A 568 (2006) 475), now actively studied in the EuroNu WP4 package, could match the ion production, but apparently the PS-SPS chain cannot digest all those ions.
- Electron capture Beta Beams: monochromatic neutrino beams, a very attractive option
 - They require long lived, high-A, far from the stability valley ions, r \Rightarrow challenging R&D to match the needed fluxes.

Neutrino Factory as a first stage of a Muon Collider

From S. Geer, Ann.Rev.Nucl.Part.Sci.59:347-365,2009. Neutrino factory

Muon collider

Mauro Mezzetto (INFN Padova)

$$\mu^-$$
 (μ^+) decay in (ν_μ , $\overline{\nu}_e$) (($\overline{\nu}_\mu$, ν_e)).

Golden channel: search for $\nu_e \rightarrow \nu_\mu (\overline{\nu}_e \rightarrow \overline{\nu}_\mu)$ transitions by detecting wrong sign muons. Default detector: 40-100 kton iron magnetized calorimeter (Minos like)

Silver channel: search for $\nu_e \rightarrow \nu_{\tau}$ transitions by detecting ν_{τ} appearance. Ideal detectors: 4× Opera or 20 Kton LAr detector.

A New Tool

- We desire precision for the long-term neutrino oscillation program \rightarrow exploit muon decays.
- Muons live a "long" time ($\tau_0 = 2\mu s$) ... to be efficient, a straight muon decay channel would have to be impractically long.
- Solution: inject muons into a storage ring with long straight sections; L(straight) / circumference ~ 1/3
- NEUTRINO FACTORIES: muons decaying in the straight section of a storage ring create a neutrino beam with unique properties for precision neutrino oscillation measurements.

HIGH-INTENSITY MUON SOURCE

- Proton Source
 - Beam power ≥ 4 MW
 - $E \ge few \ GeV$
 - Short bunches (\leq 3ns)
- Target, capture & decay
 - Create π^{\pm} , decay into μ^{\pm}
- Bunching & Phase Rotation
 - Capture into bunches
 - Reduce ΔE
- Cooling
 - Use Ionization Cooling to reduce transverse emittance to fit within an accelerator

Beam Properties - 1

- Neutrino Factories produce n beams by storing muons in a ring with long straight sections $\rightarrow O(10^{21})$ muon decays/year
- Muon decays produce a beam consisting of 50% $v_e(v_e)$ & 50% $\overline{v}_{\mu}(v_{\mu})$

$$\mu^{+} \to e^{+} \nu_{e} \overline{\nu}_{\mu} \Longrightarrow 50\% \nu_{e} + 50\% \overline{\nu}_{\mu}$$
$$\mu^{-} \to e^{-} \overline{\nu}_{e} \nu_{\mu} \Longrightarrow 50\% \overline{\nu}_{e} + 50\% \nu_{\mu}$$

- Advantages c.f. conventional neutrino beams:
- well known beam flux & spectra (low systematic uncertainties)
- can search for $\nu_e \to \nu_\mu$ oscillations with very low backgrounds (wrong-sign muon signature)
- can measure spectra for events tagged by right-sign muons, wrong-sign muons, electrons, τ⁺, τ⁻, or no leptons; and do all this when there are positive muons stored and when there are negative muons stored → a wealth of information.

Beam Properties - 2

Consider an ensemble of negatively charged muons. In the muon rest-frame:

$$\begin{array}{ccc} V_{\mu} : & \frac{d^2 N}{dx \ d\Omega_{cm}} & \propto \ \frac{2x^2}{4\pi} & \left[(3-2x) + (1-2x) \ P \cos \theta_{cm} \right] \\ \hline \overline{V}_{e} : & \frac{d^2 N}{dx \ d\Omega_{cm}} & \propto \ \frac{12x^2}{4\pi} & \left[(1-x) + (1-x) \ P \cos \theta_{cm} \right] \end{array} \begin{array}{c} \text{For } \mu^+ \ \text{decays} \\ P \rightarrow -P \end{array}$$

 $x = 2E_v/m_{\mu}$, θ is angle between the neutrino & muon spin, P is muon polarization.

In the lab frame & forward direction (cos $\theta_{lab} \sim 1$), $E_v = xE_{max} = x \gamma(1+\beta \cos \theta_{cm}) m_{\mu}/2$,

$$\begin{split} \mathbf{V}_{\mu} &: \qquad \frac{d^{2}N}{dx \ d\Omega_{lab}} \propto \frac{1}{\gamma^{2}(1-\beta\cos\theta_{lab})^{2}} \frac{2x^{2}\left[(3-2x) + (1-2x)\operatorname{P}\cos\theta_{cm}\right]}{4\pi} \\ \overline{\mathbf{V}}_{e} &: \qquad \frac{d^{2}N}{dx \ d\Omega_{lab}} \propto \frac{1}{\gamma^{2}(1-\beta\cos\theta_{lab})^{2}} \frac{12x^{2}}{4\pi}\left[(1-x) + (1-x)\operatorname{P}\cos\theta_{cm}\right] \end{split}$$

Note that polarization can, in principle, be used to switch on/off the v_e (\overline{v}_e) flux.

The neutrino flux provided by a Neutrino Factory is sufficient to produce millions of events/g in a near detector, and thousands of events/yr in a few kt detector on the other side of the Earth.

Key Experimental Signature

• The primary motivation for interest in neutrino factories is that they provide electron neutrinos (antineutrinos) in addition to muon antineutrinos (neutrinos). This enables a sensitive search for $v_e \rightarrow v_\mu$ oscillations.

 $\nu_e \rightarrow \nu_\mu$ oscillations at a neutrino factory result in appearance of a "wrongsign" muon ... one with opposite charge to those stored in the ring:

• Backgrounds to the detection of a wrong-sign muon are expected to be at the 10⁻⁴ level \rightarrow background-free $v_e \rightarrow v_\mu$ oscillations with probabilities of $O(10^{-4})$ can be measured !

"High Energy" Neutrino Factory Detector

- Magnetised Iron Neutrino Detector (MIND) at each location, M=50KT.
 Efficiency good for CC neutrino interactions with E_v ≥ ~10 GeV
- Magnetised Emulsion Cloud Chamber at intermediate baseline for tau detection

Sensitivity Comparison

Based to arXiv:1005.3146, the EuroNu midterm physics report WBB: Fermilab to Dusel, 1 MW for ν running, proton energy: 120 GeV, 2 MW for $\overline{\nu}$ running (5+5 yr), 100 kton liquid argon detector, according to Barger et al, Phys. Rev. D76:053005, 2007

(hep-ph/0703029). This setup is different from the proposed LBNE experiment.

T2KK: J-Parc ν beam running at 4 MW. 270 kton WC detector at Kamioka (295 km) and 270 kton WC detector in Korea (1050 km), Barger et al, Phys. Rev. D76:053005, 2007 (hep-ph/0703029).

PS2-Slanic CERN-PS2 SuperBeam fired to 100 kton LAr detector at Slanic, as computed by A. Rubbia, arXiv:1003.1921.

SPL: Neutrino beam from CERN-SPL running at 3.5 GeV, 4 MW. 440 kton WC detector at Frejus (130 km). Campagne et al. JHEP **0704** (2007) 003 (hep-ph/0603172).

Beta Beam $\gamma = 100$ Eurisol Beta Beam to Frejus (440 kton WC detector). Campagne et al. JHEP 0704 (2007) 003 (hep-ph/0603172).

Beta Beam + SPL The combination of the above two.

Beta Beam $\gamma = 350$ Beta Beam at $\gamma = 350$, running ⁶He and ¹⁸Ne at the same decay rates as the Eurosol Beta Beam. WC detector of 500 kton at Canfranc (650 km). S. Choubey et al., JHEP 0912:020,2009 (arXiv:0907.2379)

Low Energy Neutrino Factory (LENF) Neutrino Factory running at 4.12 GeV delivering 10^{21} muon decays/year for each sign, 30 kton No ν a like detector, fully magnetized (!) at 1480 km (Fermilab-Henderson mine). A. Bross et al, Phys.Rev.D77:093012,2008. (arXiv:0709.3889)

IDS 1.0 Neutrino Factory 25 GeV neutrino factory delivering $0.5 \cdot 10^{21}$ muon decays/year for each sign, a 50 kton iron magnetized detector and a 10 kton Emulsion Cloud Chamber, at 4000 km and

a 50 kton iron magnetized detector at 7500 km.

Sensitivity Comparison: θ_{13}

Mauro Mezzetto (INFN Padova)

Sensitivity Comparison: $sign(\Delta m_{23}^2)$

Mauro Mezzetto (INFN Padova)

Pontecorvo Neutrino School, 05/09/10 79 / 84

Sensitivity Comparison: LCPV

Mauro Mezzetto (INFN Padova)

Sensitivity Comparison: LCPV

Additional Slides

Solution

```
The scaling law for Q (constant \gamma) is:
- Q for neutrino cross-section
- 1/Q^2 for 1/L^2 distance factor for L/E = constant
hence, \propto Q \times 1/Q^2 = 1/Q
So, at a fixed gamma, a beam with isotope with say Q=10 MeV must have 3
times higher flux than a Q=3 MeV isotope to have comparable performance at
a far detector located at 1st oscillation maximum.
The scaling law for \gamma (same ion, same decay rates) is:
- \propto \gamma^2 for neutrino flux at far detector
- \propto \gamma for neutrino cross-section
- \propto 1/\gamma^2 L=distance, keeping L/E = constant
hence. \propto \gamma^2 \times \gamma \times 1/\gamma^2 = \gamma
So the merit factor of a Beta Beam can be defined as
                                        \mathcal{M} = \frac{\gamma}{O}
```


How to build the signal/exclusion plot (II)

- The minimum of the χ^2 distribution is the best fit
- The region at a given confidence level (CL) is defined by the contour at a given $\Delta\chi^2$ from the minimum.
- The CL is computed from the probability distribution of a χ^2 at two degrees of freedom $(\sin^2 2\theta, \Delta m^2)$

Question: Why $\Delta \chi^2$ and not χ^2 ? **Hint:** Why two degrees of freedom?

A more formal approach in G.Feldman and R.Cousins, Phys.Rev.D57:3873-3889,1998

