
Leptogenesis: A Pedagogical Introduction∗

Yosef Nir1, †

1Department of Particle Physics and Astrophysics

Weizmann Institute of Science, Rehovot 76100, Israel

Abstract

This is a preliminary written version of a series of lectures aimed at graduate students in particle

physics. We describe how the baryon asymmetry of the universe is determined from observa-

tions. We present the Sakharov conditions that are necessary for the dynamical generation of the

baryon asymmetry (baryogenesis). We review the puzzle of baryogenesis, namely the failure of

the Standard Model to account for the observed asymmetry. We briefly review some alternative

baryogenesis scenarios. Then, we turn our focus to leptogenesis. We show that all the qualitative

ingredients are guaranteed once the seesaw mechanism is assumed to be the source of neutrino

masses. We reproduce the main suppression factors – related to CP violation, baryon number vio-

lation, and the departure from thermal equilibrium – that play a role in this scenario. We explain

the predictive power of leptogenesis and its limitations. We describe some developments of recent

years, particularly the role of (light and heavy) flavor in leptogenesis. Large parts of this write-up

are based on Ref. [1].
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I. BARYOGENESIS

A. The Baryon Asymmetry of the Universe

Observations indicate that the number of baryons (protons and neutrons) in the Universe

is unequal to the number of antibaryons (antiprotons and antineutrons). To the best of our

understanding, all the structures that we see in the Universe – stars, galaxies, and clusters

– consist of matter (baryons and electrons) and there is no antimatter (antibaryons and

positrons) in appreciable quantities. Since various considerations suggest that the Universe

has started from a state with equal numbers of baryons and antibaryons, the observed baryon

asymmetry must have been generated dynamically, a scenario that is known by the name of

baryogenesis.

One may wonder why we think that the baryon asymmetry has been dynamically gener-

ated, rather than being an initial condition. There are at least two reasons for that. First,

if a baryon asymmetry had been an initial condition, it would have been a highly fine-tuned

one. For every 6,000,000 antiquarks, there should have been 6,000,001 quarks (see Ap-

pendix A). Such a fine-tuned condition seems very implausible. Second, and perhaps more

important, we have excellent reasons, based on observed features of the cosmic microwave

background radiation, to think that inflation took place during the history of the Universe.

Any primordial baryon asymmetry would have been exponentially diluted away by inflation.

The baryon asymmetry of the Universe poses a puzzle in particle physics. The Standard

Model (SM) of particle interactions contains all the ingredients [2] that are necessary to

dynamically generate such an asymmetry in an initially baryon-symmetric Universe: baryon

number violation, CP violation, and departure from thermal equilibrium. Yet, it fails to

explain an asymmetry as large as the one observed. New physics is called for. The new

physics must, first, distinguish matter from antimatter in a more pronounced way than

the weak interactions of the SM do. Second, it should provide a departure from thermal

equilibrium during the history of the Universe, or modify the electroweak phase transition.
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The baryon asymmetry of the Universe can be defined in two equivalent ways:

η ≡ nB − nB̄
nγ

∣∣∣
0

= (6.21 ± 0.16) × 10−10, (1)

Y∆B ≡ nB − nB̄
s

∣∣∣
0

= (8.75 ± 0.23) × 10−11 (2)

where nB, nB̄, nγ and s are the number densities of, respectively, baryons, antibaryons,

photons and entropy, a subscript 0 implies “at present time”, and the numerical value is

from combined microwave background and large scale structure data (WMAP 5 year data,

Baryon Acoustic Oscillations and Type Ia Supernovae) [3]. It is convenient to calculate

Y∆B, the baryon asymmetry relative to the entropy density s, because s = g∗(2π
2/45)T 3 is

conserved during the expansion of the Universe (g∗ is the number of degrees of freedom in

the plasma, and T is the temperature). The two definitions (1) and (2) are related through

(see Appendix B)

Y∆B = (nγ0/s0)η ≃ η/7.04. (3)

A third, related way to express the asymmetry is in terms of the baryonic fraction of the

critical energy density,

ΩB ≡ ρB/ρcrit = 0.0219 ± 0.0007. (4)

The relation to η is given by (see Appendix B)

η = 2.74 × 10−8 ΩB h2, (5)

where h ≡ H0/(100 km s−1 Mpc−1) = 0.701 ± 0.013 [4] is the present Hubble parameter.

The value of baryon asymmetry of the Universe is inferred from observations in two

independent ways. The first way is via big bang nucleosynthesis [5–7]. This chapter in

cosmology predicts the abundances of the light elements, D, 3He, 4He, and 7Li. These

predictions depend on essentially a single parameter which is η. The abundances of D and

3He are very sensitive to η. The reason is that they are crucial in the synthesis of 4He

via the two body reactions D(p, γ)3He and 3He(D,p)4He. The rate of these reactions is

proportional to the number densities of the incoming nuclei which, in turn, depend on η:

n(D) ∝ η and n(3He) ∝ η2. Thus, the larger η, the later these 4He-producing processes will

stop (that is, become slower than the expansion rate of the Universe), and consequently the

smaller the freeze-out abundances of D and of 3He will be. The abundance of 4He is less

sensitive to η. Larger values of η mean that the relative number of photons, and in particular
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photons with energy higher than the binding energies of the relevant nuclei, is smaller, and

thus the abundances of D, 3He and 3H build up earlier. Consequently, 4He synthesis starts

earlier, with a larger neutron-to-proton ratio, which results in a higher 4He abundance. The

dependence of the 7Li-abundance on η is more complicated, as two production processes

with opposite η-dependencies play a role.

The primordial abundances of the four light elements can be inferred from various ob-

servations. The fact that there is a range of η which is consistent with all four abundances

gives a strong support to the standard hot big bang cosmology. This range is given (at 95%

CL) by [5]

4.7 × 10−10 ≤ η ≤ 6.5 × 10−10, 0.017 ≤ ΩBh
2 ≤ 0.024. (6)

The dependence of the various light element abundances on η is depicted in Fig. 1.

The second way to determine ΩB is from measurements of the cosmic microwave back-

ground (CMB) anisotropies. (For pedagogical reviews, see Refs. [8, 9]; we follow here the

presentation in Ref. [8].) The CMB spectrum corresponds to an excellent approximation to

a blackbody radiation with a nearly constant temperature T . The basic observable is the

temperature fluctuation Θ(n̂) = ∆T/T (n̂ denotes the direction in the sky). The analysis

is simplest in Fourier space, where we denote the wavenumber by k.

The crucial time for the CMB is that of recombination, when the temperature dropped

low enough that protons and electrons could form neutral hydrogen. This happened at

redshift zrec ∼ 1000. Before this time, the cosmological plasma can be described, to a

good approximation, as a photon-baryon fluid. The main features of the CMB follow from

the basic equations of fluid mechanics applied to perfect photon-baryon fluid, neglecting

dynamical effects of gravity and the baryons:

Θ̈ + c2sk
2Θ = 0, cs ≡

√
ṗ/ρ̇ =

√
1/3, (7)

where cs is the sound speed in the dynamically baryon-free fluid (ρ and p are the photon

energy density and pressure). These features in the anisotropy spectrum are: the existence

of peaks and troughs, the spacing between adjacent peaks, and the location of the first peak.

The modifications due to gravity and baryons can be understood from adding their effects

to Eq. (7),

Θ̈ + c2sk
2Θ = F, cs =

1
√

3(1 + 3ρB/4ργ)
, (8)

5



���@@@���ÀÀÀ��������@@@@@@@@��������ÀÀÀÀÀÀÀÀ�����������������������������3He/H p

4He

2 3 4 5 6 7 8 9 101

0.01 0.02 0.030.005

C
M

B

B
B

N

Baryon-to-photon ratio η × 1010

Baryon density ΩBh2

D___
H

0.24

0.23

0.25

0.26

0.27

10−4

10−3

10−5

10−9

10−10

2

5
7Li/H p

Yp

D/H p ��@@��ÀÀ
FIG. 1: The abundances of 4He, D, 3He, and 7Li as predicted by the standard model of big bang

nucleosynthesis – the bands show the 95% CL range. Boxes indicate the observed light element

abundances (smaller boxes: ±2σ statistical errors; larger boxes: ±2σ statistical and systematical

errors). Taken from Ref. [5].

where F is the forcing term due to gravity, and ρB is the baryon energy density. The

physical effect of the baryons is to provide extra gravity which enhances the compression

into potential wells. The consequence is enhancement of the compressional phases which

translates into enhancement of the odd peaks in the spectrum. Thus, a measurement of

the odd/even peak disparity constrains the baryon energy density. A fit to the most recent

observations (WMAP5 data only, assuming a ΛCDM model with a scale-free power spectrum

for the primordial density fluctuations) gives (at 2σ) [4]

0.0215 ≤ ΩBh
2 ≤ 0.0240. (9)
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FIG. 2: Sensitivity of the acoustic spectrum to four fundamental cosmological parameters: (a) the

curvature as quantified by Ωtot; (b) the dark energy as quantified by the cosmological constant ΩΛ

(wΛ = −1); (c) the physical baryon density Ωbh
2; (d) the physical matter density Ωmh2, all varied

around a fiducial model of Ωtot = 1, ΩΛ = 0.65, Ωbh
2 = 0.02, Ωmh2 = 0.147. Taken from Ref. [8].

The sensitivity of the CMB to various cosmological parameters is depicted in Fig. 2 [8]. In

particular, the sensitivity to ΩBh
2 is demonstrated in Fig.2(c).

The impressive consistency between the nucleosynthesis (6) and CMB (9) constraints on

the baryon density of the Universe is another triumph of the hot big-bang cosmology. A

consistent theory of baryogenesis should explain nB ≈ 10−10s (and nB = 0).

B. Sakharov Conditions

Three conditions that are required to dynamically generate a baryon asymmetry were

formulated by Sakharov [2]:

1. Baryon number violation: This condition is required in order to evolve from an initial

state with Y∆B = 0 to a state with Y∆B 6= 0.
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2. C and CP violation: If either C or CP were conserved, then processes involving baryons

would proceed at precisely the same rate as the C- or CP-conjugate processes involving

antibaryons, with the overall effects that no baryon asymmetry is generated.

3. Out of equilibrium dynamics: In chemical equilibrium, there are no asymmetries in

quantum numbers that are not conserved (such as B, by the first condition).

These ingredients are all present in the Standard Model. However, no SM mechanism

generating a large enough baryon asymmetry has been found.

1. Baryon number is violated in the Standard Model, and the resulting baryon number

violating processes are fast in the early Universe [10]. The violation is due to the

triangle anomaly, and leads to processes that involve nine left-handed quarks (three of

each generation) and three left-handed leptons (one from each generation). A selection

rule is obeyed (this selection rule implies that the sphaleron processes do not mediate

proton decay):

∆B = ∆L = ±3n. (10)

At zero temperature, the amplitude of the baryon number violating processes is pro-

portional to e−8π2/g2 [11], which is too small to have any observable effect. At high

temperatures, however, these transitions become unsuppressed [10]. (For more details,

see Appendix D.)

2. The weak interactions of the SM violate C maximally and violate CP via the

Kobayashi-Maskawa mechanism [12]. This CP violation can be parameterized by

the Jarlskog invariant [13] which, when appropriately normalized, is of order 10−20

(see Appendix E). Since there are practically no kinematic enhancement factors in

the thermal bath [14–16], it is impossible to generate Y∆B ∼ 10−10 with such a small

amount of CP violation. Consequently, baryogenesis implies that there must exist new

sources of CP violation, beyond the Kobayashi-Maskawa phase of the Standard Model.

3. Within the Standard Model, departure from thermal equilibrium occurs at the elec-

troweak phase transition [17, 18]. Here, the non-equilibrium condition is provided by

the interactions of particles with the bubble wall, as it sweeps through the plasma.

The experimental lower bound on the Higgs mass implies, however, that this transition
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FIG. 3: The evolution of the Standard Model scalar potential with decreasing temperature for

(left) mH < 70 GeV and (right) mH > 70 GeV.

is not strongly first order, as required for successful baryogenesis (see Fig. 3). Thus, a

different kind of departure from thermal equilibrium is required from new physics or,

alternatively, a modification to the electroweak phase transition.

This shows that baryogenesis requires new physics that extends the SM in at least two ways:

It must introduce new sources of CP violation and it must either provide a departure from

thermal equilibrium in addition to the electroweak phase transition (EWPT) or modify the

EWPT itself.

C. New Physics Scenarios

Some possible new physics mechanisms for baryogenesis are the following:

GUT baryogenesis: The baryon asymmetry is generated in the out-of-equilibrium

decays of heavy bosons in Grand Unified Theories (GUTs). The GUT baryogenesis scenario

has difficulties with the non-observation of proton decay, which puts a lower bound on

the mass of the decaying boson, and therefore on the reheat temperature after inflation.

Simple inflation models do not give such a high reheat temperature which, in addition,

might regenerate unwanted relics. Furthermore, in the simplest GUTs, B+L is violated but

B − L is not. Consequently, the B + L violating SM sphalerons, which are in equilibrium

at T ∼< 1012 GeV, would destroy this asymmetry.
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Leptogenesis [19]: A class of scenarios where the particle-antiparticle asymmetry is first

generated in the lepton sector. In the best motivated leptogenesis models, new particles –

singlet neutrinos – are introduced such that the seesaw mechanism is the source of the light

neutrino masses [20]. The Yukawa couplings of the singlet neutrinos to the Standard Model

Higgs and doublet-leptons provide the necessary new source of CP violation. The rate of

these Yukawa interactions can be slow enough (that is slower than H , the expansion rate

of the Universe, at the time that the asymmetry is generated) that departure from thermal

equilibrium occurs. Lepton number violation comes from the Majorana masses of these

new particles, and the Standard Model sphaleron processes play a crucial role in partially

converting the lepton asymmetry into a baryon asymmetry [21].

Electroweak baryogenesis [17, 22–24]: A class of scenarios where the departure from

thermal equilibrium is provided by the electroweak phase transition. In principle, the SM

belongs to this class, but the phase transition is not strongly first order [25] and the CP

violation is too small [14, 15]. Thus, viable models of electroweak baryogenesis need a

modification of the scalar potential such that the nature of the EWPT changes, and new

sources of CP violation. One example [26] is the two Higgs doublet model (2HDM), where

the Higgs potential has more parameters and, unlike the SM potential, violates CP. Another

interesting example is the MSSM (minimal supersymmetric SM), where a light stop modifies

the Higgs potential in the required way [27, 28] and where there are new, flavour-diagonal,

CP violating phases. MSSM baryogenesis requires fine tuning, but in simple extensions of

the model, the fine tuning is significantly relaxed [29–31]. Electroweak baryogenesis and, in

particular, MSSM baryogenesis, might soon be subject to experimental tests at the CERN

LHC.

The Affleck-Dine mechanism [32, 33]: The asymmetry arises in a classical scalar field,

which later decays to particles. In a SUSY model, this field could be some combination of

squark, Higgs and slepton fields. The field starts with a large expectation value, and rolls

towards the origin in its scalar potential. At the initial large distances from the origin, there

can be contributions to the potential from baryon or lepton number violating interactions

(mediated, for instance, by heavy particles). These impart a net asymmetry to the rolling

field. This generic mechanism could produce an asymmetry in any combination of B and L.

Other, more exotic scenarios, are described in Ref. [34].
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II. LEPTOGENESIS

A. The seesaw-leptogenesis relation

The leptonic part of the Lagrangian, when singlet fermions Ni are added, reads

L = h∗β(L̄βφ
c∗)Eβ − λ∗αk(L̄αφ

∗)Nk −
1

2
N̄jMjN

c
j + h.c., (11)

where α, β = e, µ, τ . The Lagrangian terms of Eq. (11) are written in a basis where h and

M are diagonal and real matrices, while λ is a generic complex matrix.

The addition of the λ and M terms, involving the Ni’s, is motivated by the seesaw

mechanism for light neutrino masses. When the heavy Ni’s are integrated out, an effective

mass matrix for the light neutrinos is generated:

Lmν =
1

2
νcαm

ν
αβνβ + h.c.,

mν
αβ = λαkM

−1
k λβkv

2. (12)

The addition of these terms also implies, however, that the physics of the singlet fermions

is likely to play a role in dynamically generating a lepton asymmetry in the Universe. The

reason that leptogenesis is qualitatively almost unavoidable once the seesaw mechanism is

invoked is that the Sakharov conditions are (likely to be) fulfilled:

1. Lepton number violation: The Lagrangian terms (11) violate L because lepton number

cannot be consistently assigned to N1 in the presence of λ and M . If L(N1) = 1, then

λα1 respects L but M1 violates it by two units. If L(N1) = 0, then M1 respects L

but λα1 violates it by one unit. (Remember that the fact that the SM interactions

violate B+L implies that the requirement for baryogenesis from new physics is B−L
violation and not necessarily B violation.)

2. CP violation: Since there are irremovable phases in λ (once h and M are chosen to be

real), the Lagrangian terms (11) provide new sources of CP violation.

3. Departure from thermal equilibrium: The interactions of the Ni’s are only of the

Yukawa type. If the λ couplings are small enough, these interactions can be slower

than the expansion rate of the Universe, in which case the singlet fermions will decay

out of equilibrium.
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Thus, in the presence of the seesaw terms, leptogenesis is qualitatively almost unavoidable,

and the question of whether it can successfully explain the observed baryon asymmetry is a

quantitative one.

We consider leptogenesis via the decays of N1, the lightest of several (at least two) singlet

neutrinos Ni. When the decay is into a single flavor α, N1 → Lαφ or L̄αφ
†, the baryon

asymmetry can be written as follows:

Y∆B ≃
(

135ζ(3)

4π4g∗

)
× Csphal × η × ǫ. (13)

The first factor is the equilibrium N1 number density divided by the entropy density at

T ≫ M1. It is of O(4× 10−3) when the number of relativistic degrees of freedom g∗ is taken

as in the SM, gSM
∗ = 106.75 (see Appendix B for details). The other three factors on the

right hand side of Eq. (13) represent the following physics aspects:

1. ǫ is the CP asymmetry in N1 decays. For every 1/ǫ N1 decays, there is one more L

than there are L̄’s.

2. η is the efficiency factor. Inverse decays, other “washout” processes, and inefficiency

in N1 production (see below), reduce the asymmetry by 0 < η < 1. In particular,

η = 0 is the limit of N1 in perfect equilibrium, so no asymmetry is generated.

3. Csphal describes further dilution of the asymmetry due to fast processes which redis-

tribute the asymmetry that was produced in lepton doublets among other particle

species. These include gauge, Yukawa, and B + L violating non-perturbative effects.

B. CP violation (ǫ)

The CP asymmetry produced in N1 decay is defined by

ǫ ≡ Γ(N1 → φL) − Γ(N1 → φ†L̄)

Γ(N1 → φL) + Γ(N1 → φ†L̄)
. (14)

It arises from the interference of tree-level (subscript 0) and one-loop (subscript 1) ampli-

tudes. The tree and loop matrix elements can each be separated into a coupling constant

part c and an amplitude part A:

M = M0 + M1 = c0A0 + c1A1. (15)
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FIG. 4: The diagrams contributing to the CP asymmetry ǫ.

For example, in the tree level decay of Fig. 4,

c0 = λ∗α1, A0(N → φ†L̄α) = ūLα
PRuN . (16)

The matrix element for the CP conjugate process is

M = c∗0A0 + c∗1A1, (17)

where in the CP conjugate amplitude the uX spinors are replaced by vX spinors. Since

ūXuX = 6 p = v̄XvX , the magnitudes are the same, |Ai|2 = |Ai|2. Thus the CP asymmetry

can be written as

ǫ =

∫ |c0A0 + c1A1|2δ̃dΠL,φ −
∫ |c∗0A0 + c∗1A1|2δ̃dΠL,φ

2
∫ |c0A0|2δ̃dΠL,φ

=
Im(c0c

∗
1)

|c0|2
2
∫ Im(A0A∗

1)δ̃dΠL,φ
∫ |A0|2δ̃dΠL,φ

, (18)

where

δ̃ = (2π)4δ4(Pi − Pf), dΠL,φ = dΠLdΠφ =
d3pL

2EL(2π)3

d3pφ
2Eφ(2π)3

, (19)

and Pi, Pf are, respectively, the incoming four-momentum (in this case PN) and the outgoing

four-momentum (in this case Pφ+PL). The loop amplitude A1 has an imaginary part when

there are branch cuts corresponding to intermediate on-shell particles, which can arise in

the loops of Fig. 4 when the φ and L are on-shell:

2Im(A0A∗
1) = A0(N → φL)

∫
A∗

0(N → L̄′φ′†)δ̃′dΠL′,φ′A∗
0(L̄

′φ′† → φL). (20)

Here φ′ and L′ are the (assumed massless) intermediate on-shell particles.

In the limit Mi>1 ≫M1, the effects of Ni>1 can be represented by an effective dimension-

5 operator. In the diagrams of Fig. 4, this corresponds to shrinking the Ni>1-propagator

to a point. For calculating ǫ, the Feynman rule for the dimension-5 operator can be taken

∝ mν/v2. (There is a contribution to mν from N1 exchange, which is not present in the
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dimension-5 operator that is obtained by integrating out N2 and N3. But the N1-mediated

part of mν makes no contribution to the imaginary part for ǫ.) Then we obtain for the

relevant coupling constants

c0 = λ∗α1, c1 = (3/v2)
∑

β

λβ1m
ν∗
βα. (21)

Using A∗
0(L̄φ

† → φL) = v̄LPLuL, we obtain

ǫ =
3M1

16πv2(λ†λ)11
Im



∑

α,β

λ∗α1λ
∗
β1m

ν
βα


 . (22)

Noting that the three-vector

λ̂α =
λ†1α√

(λ†λ)11

, (23)

is a unit vector (
∑
α |λ̂1α|2 = 1), and using

UTmνU = Dν , (24)

where U is the leptonic mixing matrix and Dν = diag(m1, m2, m3), we have

Im(λ̂Tmν λ̂) = Im(λ̂TU∗UTmνUU †λ̂) = Im[(U †λ̂)TDν(U †λ̂)]

= Im(λ̂′TDνλ̂′) = Im(
∑

α

λ̂′2αmα) ≤ mmax, (25)

where λ̂′ ≡ U †λ̂ is another unit vector, and mmax is the heaviest light neutrino mass. Con-

sequently,

|ǫ| ≤ 3M1mmax

16πv2
. (26)

The upper bound on |ǫ| can be used to obtain a lower bound on M1:

M1 ∼> 109 GeV
(
matm

mmax

)( |ǫ|
10−7

)
. (27)

The lower bound on M1 further implies a lower bound on the reheat temperature after

inflation.

One can go beyond the effective theory and incorporate the N2,3 states as dynamical

degrees of freedom. For a not-too-degenerate Ni spectrum, Mi>1 −M1 ≫ ΓD, one obtains

ǫ =
1

8π

1

(λ†λ)11

∑

j

Im
{[

(λ†λ)1j

]2}
g(xj), (28)
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where

xj ≡M2
j /M

2
1 , (29)

and, within the SM [35],

g(x) =
√
x
[

1

1 − x
+ 1 − (1 + x) ln

(
1 + x

x

)]
. (30)

Expanding in powers of M1/Mj, one obtains for the decay into a specific flavor α = e, µ, τ ,

ǫα = − 1

8π(λ†λ)11

∑

j 6=1

Im
{

(λλ†)j1

[
3M1

2Mj
(λλ†)j1 +

M2
1

M2
j

(λλ†)1j +
5M3

1

6M3
j

(λλ†)j1 + . . .

]}
. (31)

The three terms in square brackets correspond, respectively, to the dimension-five term

(ℓφ)2, dimension-six term (ℓ̄φ∗) 6 ∂(ℓφ), and dimension-seven term (ℓφ)∂2(ℓφ). The d = 5

term is the neutrino mass term. It leads to Eqs. (22) and (26) and to the Davidson-Ibarra

(DI) bound on the size of the asymmetry [36]:

|ǫd=5| = |
∑

α

ǫd=5
α | ≤ 3

16π

M1(m3 −m1)

v2
. (32)

(When combined with a calculation of the washout factor, the bound leads to m3 ≤ 0.13

eV and m̃ ≤ 0.28 eV.) The DI bound demonastrates how subtle relations between the

leptogenesis parameters and the neutrino mass parameters might arise, so we derive it in

Appendix G. Yet, the DI bound can be violated when any of the following conditions holds:

1. The heavy singlet fermions are not strongly hierarchical [37–39] (the bound is not

obeyed by the d = 7 term);

2. There are more than three singlet fermions (Appendix H);

3. There are significant contributions to the asymmetry from N2,3 decays;

4. Flavor effects play a role [40, 41], which is the case when T ∼< 1012 GeV.

The d = 6 term does not break total lepton number. Indeed, its contribution to
∑
α ǫα

vanishes. Yet, when flavor effects are important and, in particular, when the washout factors

are flavor-dependent, it can generate the lepton asymmetry [42].
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C. Out-of-equilibrium dynamics (η)

The non-equilibrium which is necessary for leptogenesis is provided by the expansion of

the Universe: interaction rates which are of order, or slower than the Hubble expansion rate

are not fast enough to equilibrate particle distributions. Interactions can be classified as

much faster than H , much slower, or of the same order. For the purpose of making analytic

estimates, it is convenient to have a single scale problem. The time-scale of leptogenesis is

H−1, so we neglect interactions that are much slower than H . Interactions that are faster

than H are resummed into thermal masses, and impose chemical and kinetic equilibrium

conditions on the distributions of particles whose interactions are fast. (In Appendix C we

use chemical equilibrium constraints to demonstrate how thermal equilibrium prevents the

generation of asymmetries.)

One can formulate a rough rule for when N1 decays out of equilibrium, which is

ΓD < H(T = M1), (33)

where ΓD is the decay rate of N1,

ΓD =
(λ†λ)11M1

8π
. (34)

and H(T = M1) is the expansion rate of the Universe at the time when the temperature

equals the mass of N1,

H(T = M1) = 1.66g1/2
∗

M2
1

mPl
. (35)

Here g∗ is the number of relativistic degrees of freedom in the thermal bath. Within the

SM, g∗ = 106.75.

It is useful to introduce two dimensionful parameters [43], m̃ and m∗, which are of the

order of the light neutrino masses and which represent, respectively, the decay rate ΓD and

expansion rate H(T = M1):

m̃ ≡ 8πv2

M2
1

ΓD =
(λ†λ)11v

2

M1
,

m∗ ≡ 8πv2

M2
1

H(T = M1) ≃ 1.1 × 10−3 eV. (36)

It can be shown [44] that m̃ > mmin where mmin is the lightest light neutrino mass (see

Appendix F), so that generically m̃ ∼> msol [45, 46]. The ΓD < H(T = M1) condition for
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FIG. 5: Washout processes: inverse decays, ∆L = 2 scattering, and ∆L = 1 scattering.

out-of-equilibrium decay reads, in the language of m̃ and m∗, simply as

m̃ < m∗. (37)

If indeed m̃ ∼> msol, then this condition is not satisfied. This range of parameters is referred

to as “strong washout”. The converse, less likely, case of m̃ ∼< m∗, is referred to as “weak

washout”.

In the strong washout regime, at T ∼ M1, a thermal number density of N1 is obtained

(nN1
∼ nγ) independent of the initial conditions. The total lepton number asymmetry at

T ∼ M1 is highly suppressed, YL ≃ 0: any asymmetry made in the production of N1 is

washed out. As the temperature drops down, and the N1’s start to decay, the inverse decays

Lφ → N1, which can wash out the asymmetry, may initially be fast compared to H . The

asymmetry will survive once the inverse decays (and lepton number violating scattering

processes – see Fig. 5) are out of equilibrium:

ΓID ≡ Γ(φL→ N1) ≃
1

2
ΓDe

−M1/T < H = 1.66g1/2
∗

T 2

mPl
, (38)

where ΓD is given in Eq. (34). At temperature TF , where Eq. (38) is satisfied, the remaining

N1 density is Boltzmann suppressed, ∝ e−M1/TF . Below TF , theN1’s decay out of equilibrium

and contribute to to the lepton asymmetry. So the efficiency factor η can be estimated as

η ≃ nN1
(Tf )

nN1
(T ≫ M1)

≃ e−M1/TF ≃ m∗
m̃
, m̃ > m∗, (39)

where m∗/m̃ = H(T = M1)/ΓD. This approximation holds for m̃ > m∗ ≃ 0.001 eV.

In the weak washout regime, the total decay rate is small, m̃ < m∗. The final lepton

asymmetry now depends on the initial conditions. The most interesting scenario is called

“thermal leptogenesis”: It assumes that the initial N1 number density (at T ≫M1) is zero.

This is a rather unique scenario because the same interactions (λα1) are responsible for the

production and the decays of N1 [43, 47]. For m̃ < m∗, the number density nN1
does not
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reach the equilibrium number density. The reason is that the N1 are produced by inverse

decays, φL → N1, and, most effectively, by 2 → 2 scatterings involving the top quark,

qLtR → φ→ LN1 or LtR → φ→ qLN1:

Γprod ∼ Y 2
t (λ†λ)11

4π
T. (40)

Since Yt ∼ 1, ΓD < H(T = M1) translates into Γprod(T = M1) < H(T = M1). The N1

production is most efficient at T ∼M1, when the age of the Universe satisfies τU = 1/(2H),

so nN1
∼ ΓprodτUnγ ∼ (m̃/m∗)nγ .

Another peculiar feature of thermal leptogenesis is that the CP asymmmetry in the

processes that produce the N1 population is closely related to the CP asymmetry in the N1

decays. In particular, for hierarchical Ni’s, the CP asymmetry in the scattering interactions

by which the N1 population is produced is equal in magnitude but opposite in sign to the

CP asymmetry in N1 decays. At first sight, this suggests that the final lepton asymmetry is

zero. A non-zero asymmetry survives, however, because the initial “anti-asymmetry” made

with the N1 population is depleted by scattering, decays, and inverse decays. This washout

is critical to the viability of thermal leptogenesis. It introduces yet another suppression

factor of order m̃/m∗. Thus, for weak washout and thermal leptogenesis, we have

η ∼ m̃2

m2
∗
, m̃≪ m∗, nN1

(T ≫M1) ≃ 0. (41)

As stated above, for weak washout, the final lepton asymmetry depends on the initial

conditions. If, for example, the initial N1 population has equilibrium number density, we

have η ≃ 1. If it is much larger than the equilibrium density, i.e. the energy density in N1

dominates the energy density of the Universe at early times, then we have effectively η > 1

[48].

D. Lepton and B + L violation (Csphal)

The N1 decay, which depends on both M1 and λα1, does not conserve L. The heavy mass

eigenstate is its own antiparticle, so it can decay both to Lφ and to L̄φ∗. If there is an

asymmetry in the rates, a net lepton asymmetry will be produced.

The baryon number violation is provided by B + L changing SM non-perturbative pro-

cesses [17] (see Appendix D). Their approximate rate is given by Eq. (D14) and is faster
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than the Hubble expansion rate H in the thermal plasma for T ∼< 1012 GeV. It partially

transfers an initial lepton asymmetry or, more precisely, B − L asymmetry, into a final

baryon asymmetry according to (for the SM)

Y∆B ≃ Y∆(B−L) ×






28
79

T > TEWPT,

12
37

T < TEWPT.
(42)

In this subsection, we explain how to derive the first of the relations (42).

Let us define

Y∆α
=

1

3
Y∆B − Y∆Lα

, α = e, µ, τ, (43)

so that

Y∆(B−L) =
∑

α

Y∆α
. (44)

The important feature of Y∆α
is that, after the era of leptogenesis, the ∆α are conserved.

When the lepton number violating interections of N1 drop out of equilibrium, the only

remaining fast interactions that violate lepton and/or baryon number are the sphaleton

interatcions, but these conserve the three ∆α. We thus aim to obtain a relation between

Y∆B and the Y∆α
. Such a relation depends on which other interactions are in equilibrium,

and so we should calculate it at the temperature when the sphalerons go out of equilibrium.

Various SM interactions can change the number of particles of different species. For ex-

ample, the Lagrangian term hαL̄αφ
cEα changes a charged SU(2)-singlet lepton into a Higgs

and an SU(2)-doublet lepton. If such interactions are fast, compared to the expansion rate

H , they lead to an equilibrium state where the comoving number densities of the partici-

pating particles remain constant. This is described by conditions of chemical equilibrium:

The sum of chemical potentials, over all particles entering the interaction, should be zero.

For example, if the charged lepton Yukawa interaction is fast, we have

µEα
− µLα

+ µφ = 0. (45)

The set of reactions that are in chemical equilibrium enforce algebraic relations between

various chemical potentials [21, 49]. In what follows, it would be convenient to define for

quarks and leptons

µX =
∑

i=1,2,3

µXi
. (46)
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The chemical potentials can be related to the asymmetries in particle number densities

by expanding the distribution functions for small µ/T (see Appendix B):

∆yi ≡
ni − nī
s

=






gi

6s
T 2µi fermions

gi

3s
T 2µi bosons

(47)

where gi is the number of degrees of freedom of the particle:

gQ = 6, gU = gD = 3, gL = 2, gE = 1, gφ = 2. (48)

For T just above the EWPT, all SM interactions are fast. Fast Yukawa interactions lead

to the following relations among chemical potentials:

µUi
= µQi

+ µφ,

µDi
= µQi

− µφ,

µEi
= µLi

− µφ. (49)

The condition from QCD sphaleron interactions is redundant (see e.g. Ref. [1]). Fast EW

sphaleron interactions lead to

3µQ + µL = 0. (50)

Hypercharge neutrality requires

µQ + 2µU − µD − µL − µE + 2µφ = 0, (51)

Combining Eqs. (49), (50) and (51), we obtain

µφ = −4

7
µQ. (52)

The baryon and lepton number asymmetries are given in terms of particle number asym-

metries by

Y∆L = Y eq
∑

i

(∆yLi
+ ∆yEi

), (53)

Y∆B = Y eq 1

3

∑

i

(∆yQi
+ ∆yUi

+ ∆yDi
).

Using Eq. (47), we can express the asymmetries in terms of the chemical potentials:

Y∆L =
T 2yeq

6
(gLµL + gEµE), (54)

Y∆B =
T 2yeq

18
(gQµQ + gUµU + gDµD).
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Putting in the various gX values of Eq. (48), we obtain

Y∆L = −17

14
T 2yeqµQ, (55)

Y∆B =
2

3
T 2yeqµQ,

Y∆(B−L) =
79

42
T 2yeqµQ. (56)

We finally get

Y∆B =
28

79
Y∆(B−L). (57)

E. Baryon asymmetry from leptogenesis

We can finally put all the ingredients that we have investigated together, and get an

estimate of the baryon asymmetry from leptogenesis. Using Eq. (13) as our starting point,

focussing on the strong washout regime and making the single flavor approximation, so that

η is given by Eq. (39), and using Eq. (42) for Csphal, we obtain

Y∆B ∼ 10−3 10−3 eV

m̃
ǫ, (58)

where ǫ and m̃ depend on the seesaw parameters via, respectively, Eq. (28) and Eq. (36).

The plausible range for m̃ is the one suggested by the range of hierarchical light neutrino

masses, 10−3 − 10−1 eV, so we expect a rather mild washout effect, η ∼> 0.01. Then, to

account for Y∆B ∼ 10−10, we need |ǫ| ∼> 10−5 − 10−6. Using Eq. (28), we learn that this

condition roughly implies, for the seesaw parameters,

M1

M2

Im[(λ†λ)2
12]

(λ†λ)11
∼> 10−4 − 10−5, (59)

which is quite natural. More concretely, taking as rough estimate λ2v2/M1 ∼ 10−2 eV, then

λ ∼> 10−2 is very plausible for M1 ∼> 1011 GeV.

We can thus conclude that leptogenesis is attractive not only because all the required

features are qualitatively present, but also because the quantitative constraints are plausibly

satisfied. In particular, m̃ ∼ 0.01 eV, as suggested by the light neutrino masses, is optimal

for thermal leptogenesis as it leads to effective production of N1’s in the early Universe and

only mild washout effects. Furthermore, the required CP asymmetry can be achieved in

large parts of the seesaw parameter space.
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III. FLAVOR

Various ingredients that affect leptogenesis and had not been taken into account in the

original calculations have been identified and analyzed in recent years. These include, for

example, finite temperature effects [48] and spectator processes [50, 51].

The quantitatively most significant ingredient is, however, the flavor decomposition of

the singlet neutrinos. Flavor can involve the heavier singlet neutrinos in leptogenesis in new

ways, and it can enhance the final baryon asymmetry quite generically by a factor of a few,

and in special cases by an order of magnitude. Flavor physics brings more parameters into

the leptogenesis picture and, while making the physics richer, reduces the predictive power

of this scenario. In this section, we explain several simple flavor effects that are qualitatively

interesting and of potential quantitative importance.

A. Light flavor

The interaction rate for a charged lepton Yukawa interaction can be estimated as

Γhα
≃ 5 × 10−3h2

αT. (60)

Comparing this rate to the expansion rate of the Universe,

H(T ) = 1.66g1/2
∗

T 2

mPl
. (61)

we learn that the charged lepton Yukawa interactions are fast at temperatures below

T ∼< 3 × 10−4mPlh
2
α ∼





1012 GeV α = τ,

109 GeV α = µ,

106 GeV α = e.

(62)

(In two Higgs doublet models, such as the MSSM, the respective temperatures are higher

by a factor of (1 + tan2 β).) Hence, above T ∼ 1012 GeV, flavor effects can be neglected,

and our analysis in Section II holds. At temperatures below T ∼ 1012 GeV, the single flavor

approximation fails in general, and several, potentially significant flavor effects play a role.

In this Section we do not aim to explain all possible flavor effecs. Instead, we will just

explain a single, rather generic (and arguably the simplest) such effect.
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When charged lepton flavor Yukawa interactions are slow, then the lepton doublet state

that propagarates in spacetime is the combination of flavor eigenstates to which N1 decays,

LN1
=
∑

α

λ̂αLα (63)

In contrast, when the hα interactions are faster than the expansion rate of the Universe,

then the lepton doublet states that propagate in spacetime are the various flavor states Lα.

We define projection operators,

Pα ≡ |〈Lα|LN1
〉|2,

P̄α ≡ |〈L̄α|L̄N1
〉|2,

∆Pα ≡ Pα − P̄α. (64)

At tree level, Pα = P̄α = |λ1α|2, but at the one-loop level we have, in general, ∆Pα 6= 0.

The physical meaning of ∆Pα 6= 0 is that the lepton and the antilepton states to which

N1 decays are not CP-conjugates of each other, which is a qualitatively new source of CP

asymmetry that is not present in the unflavored case. We will, however, ignore this effect in

what follows.

Putting by hand ∆Pα = 0, the expressions for the CP asymmetry and the washout

parameter for a specific flavor are simply given by

ǫα = Pαǫ, m̃α = Pαm̃. (65)

In case that the individual lepton flavors are resolved by fast Yukawa interactions, the

expression of Eq. (13) for the baryon asymmetry is replaced by

Y∆B ≃
(

135ζ(3)Csphal

4π4g∗

)
∑

α

ηα ǫα. (66)

The fact that some of the flavors could be in the weak washout regime while others are in

the strong washout regime opens the way to interesting effects that often have dramatic

quantitative consequences.

We again choose to focus on the simplest scenario. We take all Pα to be approximately

equal to each other,

Pα ≃ 1

Nf
, (67)
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where Nf is the number of flavors that are resolved by fast charged lepton Yukawa inter-

actions: Nf = 2(3) for T ∈ 109 GeV – 1012 GeV (< 109 GeV). We further assume that

m̃α > m∗ for all flavors. Then

∑

α

ηα ǫα =
∑

α

η

Pα
(Pαǫ) =

∑

α

η ǫ ≃ Nf η ǫ. (68)

We learn that in a generic case, where the lepton-doublet state to which N1 decays is neither

aligned nor orthogonal to any of the flavor directions e, µ, τ , the final baryon asymmetry

will be enhanced by a factor of 2–3 if leptogenesis occurs at temperatures lower than about

1012 GeV.

Some of the early literature on flavor effects in leptogeneis, where additional consequences

are discussed, includes Refs. [40, 41, 52–54].

The phenomenological consequences are as follows:

• In the single flavor approximation, the DI bound leads to an upper bound of order

0.15 eV on the light neutrino masses. Flavor effects lift the bound (with some tuning

of parameters) to the eV scale, where direct bounds apply anyway.

• An important, but disappointing, feature of the single flavor approximation is the lack

of model independent relation between CP violation in the leptogenesis processes and

the observable phases of the lepton mixing matrix U . This remains true in the flavored

case.

• Flavor effects hardly relax the lower bound on M1 (and, consequently, on Treheat) which

remains at

M1 ∼> 2 × 109 GeV (non − degenerate mi). (69)

B. Heavy flavor

In the conventional leptogenesis picture, three singlet neutrinos Ni are added to the SM,

with hierarchical Majorana masses, M1 ≪ M1 ≪ M3. It is often assumed that the L-

violating effects of N1 would washout any lepton asymmetry ∆yLN2,3
generated at tempera-

tures T ≫M1 in the decays of N2,3. If this were the case, the final asymmetry would depend

only on N1 dynamics, and the number of parameters would be reduced to just M1, m̃ and

ǫ. However, under various, rather generic, circumstances, the lepton asymmetry generated
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in N2,3 decays survives the N1 leptogenesis phase. Thus, it is quite possible that the lepton

asymmetry relevant for baryogenesis originates mainly (or, at least, in a non-negligible part)

from N2,3 decays.

The possibility that N2 leptogenesis can successfully explain the baryon asymmetry of

the Universe has been shown in two limiting cases:

1. The N1-decoupling scenario, in which the λα1 couplings are simply too weak to washout

the N2-generated asymmetry [55–57].

2. The strong N1-coupling scenario, where N1-related decoherence effects project part of

the lepton asymmetry from N2 decays onto a flavor direction that is protected against

N1 washout [52, 58–60].

The N1-decoupling scenario is simple to understand. It applies when N1 is weakly coupled

to the lepton doublets, m̃1 ≪ m∗. (In this subsection, we call the washout parameter

m̃ by m̃1, to emphasize that it relates to N1 interactions, and to distinguish it from the

analogously defined m̃2.) In this case, the asymmetry generated in thermal N1 leptogenesis

is too small. Furthermore, the N1 washout effects are negligible and, consequently, the

asymmetry generated in N2 decays survives.

The strong N1-coupling scenario for N2 leptogenesis is more subtle. For simplicity, we

assume that the N2-related washout is not too strong, while the N1-related washout is so

strong that it makes N1 leptogenesis fail:

m̃2 6≫ m∗, m̃1 ≫ m∗. (70)

To further simplify the analysis, we impose two additional constraints: thermal leptogenesis,

and strong hierarchy, M2/M1 ≫ 1. Then it is guaranteed that

nN1
(T ∼M2) ≈ 0, nN2

(T ∼M1) ≈ 0, (71)

and the dynamics of N2 and N1 decouple.

The N2 decays into a combination of lepton doublets that we denote by L2:

|Li〉 = (λ†λ)
−1/2
ii

∑

α

λαi|Lα〉. (72)

The second condition in (70) implies that already at T ∼> M1 the N1-Yukawa interactions

are sufficiently fast to quickly destroy the coherence of L2. Then a statistical mixture of L1
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and the state orthogonal to L1, which we call L0, builds up. Ignoring light flavor effects

(which is appropriate if T ∼> 1012 GeV), we are led to choose an orthogonal basis for the

lepton doublets, (L1, L0, L
′
0), where 〈L′

0|L2〉 = 0. Then the asymmetry ∆YL2
produced in

N2 decays decomposes into two components:

∆YL0
= c2∆YL2

, ∆YL1
= s2∆YL2

, (73)

where c2 ≡ |〈L0|L2〉|2 and s2 = 1−c2. The crucial point is that we expect, in general, c2 6= 0,

and, since 〈L0|L1〉 = 0, ∆YL0
is protected against N1 washout. Consequently, a finite part

of the asymmetry ∆YL2
from N2 decays survives through N1 leptogenesis. A more detailed

analysis [59] finds that ∆YL1
is not entirely washed out, and the final lepton asymmetry is

given by Y∆L = (3/2)∆YL0
= (3/2)c2∆YL2

.

The conclusion is that N2,3 leptogenesis cannot be ignored, unless at least one of the

following conditions applies:

1. The asymmetries and/or the washout factors vanish, ǫN2
η2 ≈ 0 and ǫN3

η3 ≈ 0.

2. N1-related washout is still significant at T ∼< 109 GeV.

3. The reheat temperature is below M2.

IV. CONCLUSIONS

There is convincing evidence from solar, atmospheric, reactor and accelerator neutrino

experiments that the SM neutrinos are massive. The seesaw mechanism extends the SM in a

way that allows neutrino masses and nicely explains their lightness. Furthrmore, without any

modification or addition, the physics of the seesaw mechanism – heavy Majorana fermions

with Yukawa couplings to the SM lepton doublets – can also account for the observed baryon

asymmetry of the Universe. The possibility of giving an explanation of two apparently

unrelated experimental facts – neutrino masses and the baryon asymmetry – within a single

framework that is a natural extension of the Standard Model, together with the remarkable

‘coincidence’ that the same neutrino mass scale suggested by neutrino oscillation data is

also optimal for leptogenesis, makes the idea that baryogenesis occurs through leptogenesis

a very attractive one.
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Leptogenesis can be quantitatively successful without any fine-tuning of the seesaw pa-

rameters. Yet, in the non-supersymmetric seesaw framework, a fine-tuning problem arises

due to the large corrections to the mass-squared parameter of the Higgs potential that are

proportional to the heavy Majorana neutrino masses. Supersymmetry can cure this problem,

avoiding the necessity of fine tuning. However, the gravitino problem that arises in many

supersymmetric models requires a low reheat temperature after inflation, in conflict with

generic leptogenesis models. Thus, constructing a fully satisfactory theoretical framework

that implements leptogenesis within the seesaw framework is not a straightforward task.

From the experimental side, the obvious question to ask is if it is possible to test whether

the baryon asymmetry has been really produced through leptogenesis. Unfortunately it

seems impossible that any direct test can be performed. To establish leptogenesis experi-

mentally, we need to produce the heavy Majorana neutrinos and measure the CP asymmetry

in their decays. However, in the most natural seesaw scenarios, these states are simply too

heavy to be produced, while if they are light, then their Yukawa couplings must be very

tiny, again preventing any chance of direct measurements.

The possibility of indirect tests from low-energy measurements depends on the existence

of new physics at or below the TeV scale that carries the imprint of the seesaw parameters.

A plausible scenario is that of supersymmetry with flavor-universal soft supersymmetry

breaking terms. Indeed, a determination of all seesaw parameters from processes involvong

the supersymmrtic particles is possible in principle, though not in practice [61, 62].

Lacking the possibility of a direct proof, experiments can still provide circumstantial ev-

idence in support of leptogenesis by establishing that (some of) the Sakharov conditions

for leptogenesis are realized in nature. Planned neutrinoless double beta decay (0νββ) ex-

periments aim at a sensitivity to the effective 0νββ neutrino mass in the few × 10 meV

range. If they succeed in establishing the Majorana nature of the light neutrinos (this is

likely to happen if neutrinos are quasi-degenerate or if the mass hierarchy is inverted), this

will strengthen our confidence that the seesaw mechanism is at the origin of the neutrino

masses and, most importantly, will establish that the first Sakharov condition for the dy-

namical generation of a lepton asymmetry, that is that lepton number is violated in nature,

is satisfied. Proposed SuperBeam facilities and second generation off-axis SuperBeams ex-

periments can discover CP violation in the leptonic sector. These experiments can only

probe the Dirac phase of the neutrino mixing matrix. They cannot probe the Majorana low
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energy or the high energy phases, but the important point is that they can establish that the

second Sakharov condition for the dynamical generation of a lepton asymmetry is satisfied.

In contrast to the previous two conditions, verifying that the decays of the heavy neutrinos

occurred out of thermal equilibrium (the third condition) remains out of experimental reach,

since it would require measuring the heavy neutrino masses and the size of their couplings.

Finally, the CERN LHC has the capability of providing information that is relevant

to leptogenesis. In particular, electroweak baryogenesis can be tested at the LHC. It will

become strongly disfavored (if not completely ruled out) if supersymmetry is not found, or

if supersymmetry is discovered but the stop and/or the Higgs are too heavy. Eliminating

various scenarios that are able to explain the baryon asymmetry will strengthen the case

for the remaining viable possibilities, including leptogenesis. Conversely, if electroweak

baryogenesis is established by the LHC (and EDM) experiments, the case for leptogenesis

will become weaker.

To conclude, the seesaw framework provides the most natural and straightforward ex-

planation of the light neutrino masses and has, in principle, all the ingredients that are

necessary for successful leptogenesis. This makes leptogenesis arguably the most attractive

explanation for the observed baryon asymmetry. This scenario has limited predictive power

for low energy observables, so it is unlikely to be directly tested. Yet, future experiments

have the potential of strengthening, or weakening, or even falsifying the case for leptogenesis.
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APPENDIX A: THE BARYON ASYMMETRY AS AN INITIAL CONDITION

The present number density is observed to be

Y 0
∆B =

(
nb − nb̄

s

)

0
≈ 8.7 × 10−11. (A1)

We would like to understand what kind of fine-tuning it takes to explain it by an initial

condition (say, at T ∼MP ), namely

Y i
∆B 6= 0, (A2)

assuming only standard model physics.

For temperatures below the EWPT, Y∆B is fixed. For temperatures above the EWPT,

the denominator of Y∆B, that is s, is changing only by the expansion of the Universe, while

the numerator, namely nb − nb̄, is changing by both the expansion of the Universe and the

sphaleron interactions. The change due to the expansion thus cancels out in Y∆B, and we

have

Y 0
∆B = CsphalY

i
∆(B−L), (A3)

where

CSM
sphal =

28

79
. (A4)

We further use (for T ≫ 100 GeV)

s = 1.8g∗nγ , nq ≃ nq̄ = (7/8)nγ, (A5)

where gSM
∗ = 106.75. Note that nb = nq/3.

We obtain:

Y 0
∆B =

Csphal

3

(
nq − nq̄

1.8g∗(8/7)nq

)

i

, (A6)

leading to
(
nq − nq̄
nq

)

i

= 6.2Y 0
∆B

g∗
Csphal

= 5.4 × 10−10 g∗
Csphal

= 1.6 × 10−7. (A7)

Thus, we need to have about six million and one quarks for every six million quarks.

APPENDIX B: USEFUL EQUATIONS

The photon number density is given by

nγ =
2ζ(3)

π2
T 3 ≃ 0.2436T 3. (B1)
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The entropy density is given by

s =
2π2

45
qT 3,

q =
∑

bosons

gB

(
TB
T

)3

+
7

8

∑

fermions

gF

(
TF
T

)3

,

q0 = 2 + 3 × 2 × 7

8

(
Tν
T

)3

0
= 2 +

21

4

4

11
=

43

11
. (B2)

The present ratio of photon number density to the entropy density is given by

s0

nγ0
=

2π2

45
× 43

11
× π2

2ζ(3)
≃ 7.04 =⇒ η ≃ 7.04Y∆B. (B3)

The critical energy density is given by

ρc =
3H2

8πGN
= 1.05 × 10−5 h2 GeV cm−3. (B4)

Then, η and Ωb are related as follows:

η =
nb
nγ

=
Ωbρc
nγmb

= Ωbh
2 1.05 × 10−5

411 × 0.938
= 2.74 × 10−8 Ωbh

2. (B5)

The equilibrium number density of massless fermions is given by

neq
i =

3ζ(3)giT
3

4π2
, (B6)

where gi is the number of internal degrees of freedom of the particle. For the Ni’s, gN = 2

because they are Majorana fermions, and

neq
N1

s
=

135ζ(3)

4π4q
. (B7)

The equlibrium number densities, such as Eq. (B6) for fermions, are derived by integrat-

ing over the Fermi-Dirac (+) or Bose-Einstein (−) distributions,

f eq
i,±(p) =

1

e(Ei−µi)/T ± 1
, (B8)

which, expanding to leading order in the chemical potential µi/T and neglecting effects of

order mi/T , gives

neq
i,± =

gi
(2π)3

∫
d3pf eq

i,±(p) =
giT

3

π2
×






ζ(3) + µi

T
ζ(2) (bosons),

3
4
ζ(3) + 1

2
µi

T
ζ(2) (fermions).

(B9)

Eq. (47) can be derived straightforwardly from Eqs. (B9).
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APPENDIX C: THE THIRD SAKHAROV CONDITION

This section is based on a lecture given by E. Nardi at the νTheME theory Institute,

CERN 2010.

We use the chemical equilibrium constraints imposed by fast interactions to demonstrate

explicitly that no asymmetry can be generated in thermal equilibrium. For simplicity, we

work in a single generation framework. The relation between chemical potential and particle

asymmetries was presented in Section IID. For a single generation, there are six chemical

potentials:

µQ, µU , µD, µL, µE, µφ. (C1)

(Since N is a Majorana fermion, its chemical potential vanishes, µN = 0.) Let us assume

that all of the SM interactions are faster than the expansion rate of the Universe. Then, the

SM Yukawa interactions and the EW sphaleron interactions impose four relations among

the chemical potentials:

µQ − µU + µφ = 0,

µQ − µD − µφ = 0,

µL − µE − µφ = 0,

3µQ + µL = 0. (C2)

Hypercharge neutrality imposes an additional constraint:

µQ + 2µU − µD − µL − µE + 2µφ = 0. (C3)

If the neutrino Yukawa interaction is also fast enough to impose chemical equilibrium, we

have a sixth relation,

µL + µφ = 0. (C4)

With six such conditions for six chemical potentials, the solution is

µQ = µU = µD = µL = µE = µφ = µN = 0, (C5)

showing that no particle asymmetry is generated. If, on the other hand, the singlet neutrino

is out of equlibrium, the condition (C4) is relaxed, allowing for non-vanishing asymmetries.
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If any of the SM interactions is slow, so that the related condition on the chemical

potentials is relaxed, a corresponding conservation law arises [63]. Explicitly, slow electron

Yukawa interaction (he = 0) leads to electron number conservation,

∆ne = 0, (C6)

slow EW sphaleron interaction leads to baryon number conservation,

∆B = 0, (C7)

and slow up Yukawa interaction (hu = 0) implies that the (otherwise redundant) condition

for fast QCD sphaleron interaction should be imposed,

µQ − µU − µD = 0. (C8)

Thus, we are always left with five conditions for six chemical potentials, implying that one

chemical potential (µL) is sufficient to describe all asymmetries.

APPENDIX D: B + L VIOLATION

This section is based on a lecture given by V. Rubakov at the Lake Louise Winter Insti-

tute, 2008.

The renormalizable Lagrangian of the Standard Model conserves the baryon number

B and the three lepton flavor numbers Lα. However, due to the chiral anomaly, there

are non-perturbative gauge field configurations that violate B + L [11, 64, 65] (where L =

Le+Lµ+Lτ ). In the early Universe, at temperatures above the electroweak phase transition

(EWPT), such configurations – commonly called “sphalerons” – occur frequently and lead

to rapid B + L violation.

1. The chiral anomaly

Consider the Lagrangian for a massles Dirac fermion φ with U(1) gauge interactions:

L = ψγµ(∂µ − iAµ)ψ − 1

4e2
FµνF

µν . (D1)

It is invariant under the local symmetry

ψ(x) → eiθ(x)ψ(x), Aµ(x) → Aµ(x) + ∂µθ(x). (D2)
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It is also invariant under a global “chiral” symmetry:

ψ(x) → eiγ5φψ(x). (D3)

The associated current,

jµ5 = ψγ5γ
µψ, (D4)

is conserved at tree level, but not in quantum theory. This can be related to the regulariza-

tion of loops – renormalization introduces a scale, and the scale breaks the chiral symmetry,

as would a fermion mass. At one loop, one finds

∂µj
µ
5 =

1

16π2
F̃µνF

µν =
ǫρσµν
16π2

F ρσFµν . (D5)

The right-hand side can be written as a total divergence involving gauge fields, and is related

to their topology: it counts the “winding number”, or Chern-Simons number, of the field

configuration. In four dimensions, the space-time integral of the right-hand side vanishes

for an Abelian gauge field, but can be non-zero for non-Abelian fields.

In the context of leptogenesis, we are interested in the anomaly of the B + L current. It

arises due to the SU(2) gauge interactions, which are chiral and non-Abelian. The relevant

fermions are the three generations of quark and lepton SU(2)-doublets: {ψiL} = {qa,αL , ℓαL},
where a is a color index and α is a generation index. The Lagrangian terms for the SU(2)

gauge interactions read

L =
∑

i

ψL
i
(
∂µ − i

g

2
σAWA

µ

)
ψiL, (D6)

where A is an SU(2) index. The Lagrangian terms (D6) have twelve global U(1) symmetries,

one for each field:

ψiL(x) → eiβψiL(x). (D7)

The chiral currents associated with these transformations,

jiµ = ψL
i
γµψ

i
L, (D8)

are conserved at tree level, but are anomalous in the quantum theory:

∂µjiµ =
1

64π2
FA
µνF̃

µνA. (D9)

Let us define Qi(t) =
∫
ji0d

3x, ∆Qi = Qi(+∞) − Qi(−∞), and let us suppose for the

moment that there exist field configurations for which

∆Qi =
1

64π2

∫
d4x FA

µνF̃
µνA (D10)
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Le

Lµ

Lτ

Q3

Q2

Q1

FIG. 6: A B + L violating process due to non-perturbative SM effects.

is a non-zero integer. This implies that fermions will be created, even though there is no

perturbative interaction in the Lagrangian that generates them.

2. B + L violating rates

At zero temperature, gauge field configurations that give non-zero
∫
d4x F̃F correspond

to tunneling configurations and are called instantons. They change fermion number by an

integer N , so that the instanton action is large:

∣∣∣∣∣
1

4g2

∫
d4x FA

µνF̃
µνA

∣∣∣∣∣ ≥
64π2N

4g2
. (D11)

Consequently, the associated rate is highly suppressed,

Γ ∝ e−(instanton action) ∼ e−4π/αW , (D12)

and the mediated B + L violation is unobservably small. Moreover, the instantons do not

lead to proton decay, because an instanton acts as a source for three leptons (one from

each generation), and nine quarks (all colors and generations), so it induces ∆B = ∆L = 3

processes of the type depicted in Fig. 6. The three quantum numbers B/3 − Lα are not

anomalous, so they are conserved in the SM.
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If the ground state of the gauge fields is pictured as a periodic potential, with minima

labeled by integers, then the instantons correspond to vacuum fluctuations that tunnel

between minima. With this analogy, one can imagine that at finite temperature, a thermal

fluctuation of the field can climb over the barrier. The sphaleron is such a configuration, in

the presence of the Higgs vacuum expectation value. The B +L violating rate mediated by

sphalerons is Boltzmann suppressed:

Γsph ∝ e−Esph/T = e−(2BmW /αW )/T , (D13)

where Esph is the height of the barrier at T = 0, and 1.5 ∼< B ∼< 2.75 is a parameter that

depends on the Higgs mass.

For leptogenesis, we are interested in the B +L violating rate at temperatures far above

the EWPT. The largeB+L violating gauge field configurations occur frequently at T ≫ mW .

Their rate can be estimated as [66]

ΓB+L violation ≃ 250α5
WT. (D14)

For temperatures below 1012 GeV and above the EWPT, B + L violating rates are in

equilibrium.

APPENDIX E: THE SUPPRESSION OF KM BARYOGENESIS

The three generation Standard Model can violate CP [12]. However, in order that CP is

indeed violated, the parameters of the model must fulfill a long list of conditions:

• The up sector masses (mu, mc, mt) have to be different from each other and, similarly,

the down sector masses (md, ms, mb) have to be different from each other.

• The three CKM mixing angles (θ12, θ23, θ13) have to be different from 0 and from π/2.

• The KM phase γ has to be different from 0 and from π.

This set of conditions can be mathematically expressed as the requirement that [13] (sij ≡
sin θij , cij ≡ cos θij):

JCP ≡ (m2
t −m2

c)(m
2
t −m2

u)(m
2
c−m2

u)(m
2
b−m2

s)(m
2
b−m2

d)(m
2
s−m2

d)s12s23s13c12c13c23sγ 6= 0.

(E1)
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The baryon asymmetry of the Universe is a CP violating observable. As such, it is

actually proportional to JCP . Note that JCP has dimension of [mass12]. What appears in

the contribution of the KM mechanism to the baryon asymmetry is in fact a dimensionless

quantity, JCP/T
12
c , where Tc ∼ 100 GeV is the critical temperature of the EWPT. When

one puts the measured values of the quark masses and CKM parameters in JCP , one obtains

that JCP/T
12
c ∼ 10−20, and thus the KM mechanism cannot explain an asymmetry as large

as O(10−10).

One may wonder why the suppression by JCP does not apply to all CP asymmetries

measured in experiments. After all, there are CP asymmetries such as SψK that are exper-

imentally of order one and theoretically known to be suppressed by the KM phase (sin 2β)

but by none of the mixing angles or small quark mass-squared differences of JCP . The

answer provides some insights as to how the KM mechanism operates. As concerns the

mixing angles, they often cancel in the CP asymmetries which are ratios of CP violating to

CP conserving rates. The physics behind the mass factors in Eq. (E1) is that, in order to

exhibit CP violation, a process has to “go through” all three generations of quark flavors,

and “sense” that their masses are different from each other. Sometimes, the experiment does

that for us. For example, when experimenters measure the CP asymmetry in B → ψKS,

they already distinguish the bottom, charm, and strange masses from the others (by identi-

fying, respectively, the B, ψ and K mass eigenstates) and thus ‘get rid’ of the corresponding

mass factors. In contrast, baryogenesis is a flavor-blind process (it sums over all flavors),

and thus suppressed by all six mass-related factors of Eq. (E1).

APPENDIX F: THE CASAS-IBARRA PARAMETRIZATION [67]

The see-saw relation is given by

mν = v2λTM−1λ. (F1)

Using the leptonic mixing matrix to rotate to the mass basis, we have

Dν = v2UTλTM−1λU = v2UTλTM−1/2M−1/2λU. (F2)

Multiplying both sides on the left and on the right by (Dν)
−1/2 we get

1 = (vM−1/2λUD−1/2
ν )T (vM−1/2λUD−1/2

ν ). (F3)
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The solution to this equation is

R = vM−1/2λUD−1/2
ν , (F4)

with the condition that RTR = 1. Solving for λ, we find the Casas-Ibarra parametrization:

λ =
1

v
M1/2RD1/2

ν U †. (F5)

Writing the CP asymmetry in N1 decay in terms of the Casas-Ibarra parametrization, we

obtain

ǫ = −
∑

j=2,3

3

16π

M1

Mj

Im
[
(λ†λ)2

1j

]

(λ†λ)11

= − 3

16π

M1

v2

∑
im

2
iIm(R2

1i)∑
imi|R1i|2

. (F6)

When the matrix R is square then R−1 = RT . In this case, the relation RRT = 1 also holds.

In particular
∑
iR

2
1i = 1.

The Casas-Ibarra parametrization provides also insights concerning the washout effects.

Define a matrix [46]

M̃ = v2M−1/2λλ†M−1/2. (F7)

Then, in terms of the Casas-Ibarra parametrization, we have

M̃αβ =
∑

i

miRαiR
∗
βi. (F8)

The parameter m̃ define in Eq. (36) can be straightforwardly identified as m̃ = M̃11 and,

consequently,

m̃ =
∑

i

mi|R1i|2 ≥
∑

i

miR
2
1i ≥ m1

∑

i

R2
1i = m1. (F9)

APPENDIX G: THE DAVIDSON-IBARRA BOUND [36]

We want to find the extrema of

f =

∑
m2
jImR2

1j∑
mj |R1j|2

. (G1)

Take R2
1j = xj + iyj. Then, orthogonality implies x1 + x2 + x3 = 1, y1 + y2 + y3 = 0:

f =
(m2

3 −m2
1)y3 + (m2

2 −m2
1)y2

m3

√
x2

3 + y2
3 +m2

√
x2

2 + y2
2 +m1

√
(1 − x2 − x3)2 + (y2 + y3)2

. (G2)
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The largest |f | will be reached when the denominator is smallest, which corresponds to

x2 = 0, x3 = 0.

|f | ≤
∣∣∣∣∣∣

(m2
3 −m2

1)y3 + (m2
2 −m2

1)y2

m3|y3| +m2|y2| +m1

√
1 + (y2 + y3)2

∣∣∣∣∣∣
. (G3)

The signs of y2 and y3 can be either the same or opposite. When they are the same,

|f | ≤ (m2
3 −m2

1)|y3| + (m2
2 −m2

1)|y2|
m3|y3| +m2|y2| +m1

√
1 + (|y2| + |y3|)2

=
(m2

3 −m2
1) + (m2

2 −m2
1)|z|

m3 +m2|z| +m1

√
1

|y3|2 + (|z| + 1)2
, (G4)

with |z| = |y2|/|y3|. Again, the maximum is reached when the denominator is minimal,

which corresponds to |y3| → ∞. So,

|f | ≤ (m2
3 −m2

1) + (m2
2 −m2

1)|z|
m3 +m2|z| +m1(|z| + 1)

. (G5)

This function decreases monotonically in 0 ≤ |z| <∞, so the extrema are in the boundaries.

If we take |z| = 0, we obtain |f | ≤ m3 −m1 and if we take |z| → ∞, |f | ≤ m2 −m1. The

absolute maximum for this case is |f | ≤ m3 −m1.

When the signs are opposite, from Eq.(G3) we obtain

|f | ≤
∣∣∣∣∣∣

(m2
3 −m2

1)|y3| − (m2
2 −m2

1)|y2|
m3|y3| +m2|y2| +m1

√
1 + (|y2| − |y3|)2

∣∣∣∣∣∣

=

∣∣∣∣∣∣
(m2

3 −m2
1) − (m2

2 −m2
1)|z|

m3 +m2|z| +m1

√
1

|y3|2 + (|z| − 1)2

∣∣∣∣∣∣

≤ |(m2
3 −m2

1) − (m2
2 −m2

1)|z||
m3 +m2|z| +m1||z| − 1| , (G6)

where |z| = |y2/y3| and where we have taken |y3| → ∞ to minimize the denominator (and

maximize |f |).
Depending on the value of |z|, this function can take different values:

• 0 < |z| < 1,

|f | ≤ (m2
3 −m2

1) − (m2
2 −m2

1)|z|
m3 +m2|z| +m1(1 − |z|) . (G7)

• 1 < |z| < (m2
3 −m2

1)/(m
2
2 −m2

1),

|f | ≤ (m2
3 −m2

1) − (m2
2 −m2

1)|z|
m3 +m2|z| +m1(|z| − 1)

. (G8)
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• (m2
3 −m2

1)/(m
2
2 −m2

1) < z <∞,

|f | ≤ (m2
2 −m2

1)|z| − (m2
3 −m2

1)

m3 +m2|z| +m1(|z| − 1)
. (G9)

In none of the intervals there is an extremum. Therefore, the extrema have to lie on the

boundaries:

|z| = 0 =⇒ |f | ≤ m3 −m1, (G10)

|z| = 1 =⇒ |f | ≤ m3 −m2,

|z| =
m2

3 −m2
1

m1
2 −m2

1

=⇒ |f | ≤ 0,

|z| = ∞ =⇒ |f | ≤ m2 −m1.

The absolute maximum is again |f | ≤ m3 −m1.

Note that the bound is saturated when |y3| → ∞, which implies non-perturbative Yukawa

couplings. Imposing perturbativity, the bound would become somewhat stronger. Also,

imposing acceptable washout makes the bound stronger.

APPENDIX H: THE FAILURE OF THE DI BOUND IN THE 3 + 4 CASE

This section is based on private communication with A. Strumia.

If there are more than three singlet fermions that have Yukawa couplings to the lepton

doublets, then we cannot follow the derivation of the previous subsection since RRT 6= 1.

Indeed, the DI bound does not hold in this case, as demonstrated by the following example.

The Lagrangian is given by

−L = (g1N1 + g4N4)LeH + g2N2LµH + g3N3LτH +
1

2
MαNαNα. (H1)

The Yukawa matrix is then given as

λ =




g1 0 0

0 g2 0

0 0 g3

g4 0 0




. (H2)

The see-saw relation gives us

mν = v2




g21
M1

+
g24
M4

0 0

0
g22
M2

0

0 0
g23
M3



. (H3)
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To get degenerate neutrinos, we need to have
∣∣∣∣∣
g2
2

M2

∣∣∣∣∣ =

∣∣∣∣∣
g2
3

M3

∣∣∣∣∣ =

∣∣∣∣∣
g2
1

M1
+

g2
4

M4

∣∣∣∣∣ =
m

v2
. (H4)

The matrix U diagonalizes m†
νmν so in this case it is just the unit matrix. The diagonal Dν

matrix is given by

Dν =




meiα 0 0

0 meiβ 0

0 0 meiγ



. (H5)

The matrix R is given by

Rij = v




g1
√
e−iα√
M1m

0 0

0 g2
√
e−iβ√
M2m

0

0 0 g3
√
e−iγ√
M3m

g4
√
e−iα√
M4m

0 0




. (H6)

We can indeed verify that RTR = 1 since

RTR =
v2

m




e−iα(
g21
M1

+
g24
M4

) 0 0

0 e−iβ
g22
M2

0

0 0 e−iγ
g23
M3




= 1. (H7)

However,

(RRT )11 = v2g
2
1e

−iα

M1m
. (H8)

We see that in order to have Im(RRT )11 = 0, then the phase of g2
1 is α. However, the

phase of g2
1 + g2

4 must also be α from eq. (H7). This can only be if g2
4 has a phase α.

But this necessarily means that the CP asymmetry will vanish since the CP asymmetry

ǫ ∝ Im((g1g
∗
4)

2). Therefore, in this example, we cannot have Im(RRT )11 = 0 and the proof

of the DI bound fails.
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