Dark Matter

4

F

Experiments

Wolfgang Rau, Queen's University

G

G

Overview

- Evidence for Dark Matter
- Dark Matter Candidates
- Indirect Searches
- Direct Searches
- Conclusions

Others : e.g. Axions, Axinos, Gravitino, WIMPzillas...

Candidates

Indirect Detection

Direct

Detection

9

b

F

T

Candidates - Axions

Candidates

Indirect Detection

Direct Detection

Candidates - Axions

Axions – Results

Candidates - WIMPs

Candidates

Indirect Detectior

Direct Detectior

Indirect Detection

Origin of indirect signal

• <u>SUSY WIMPs are Majorana particles:</u> WIMP-WIMP annihilation possible, annihilation rate depends on ρ_{χ}^{2} Search for annihilation products from regions with high WIMP density

(decaying WIMPs also give indirect signal)

<u>High WIMP density regions:</u>
 Center of the galaxy (Milky way, neighbours)
 Substructure of the halo, "subhalos"
 Accumulation of WIMPs in sun/earth

Detector

<u>What to look for:</u>
neutrinos (center of sun/earth)
gamma rays (center of galaxy, subhalos)
exotic particles in cosmic radiation, e.g.
positrons, anti-protons... (subhalos)

Eviden

Indirect Detection

Direct Detectior

Indirect Detection - Neutrinos

SuperKamiokande

- 50 kt water Cherenkov detector
- Detects atmospheric/solar $\boldsymbol{\nu}$
- DM signal: high energy vs from center of sun/earth

Amanda/Icecube

- Ice Cherenkov detector , south pole
- Searches for very high energy $\boldsymbol{\nu}$
- DM signal: "low" energy vs from center of sun/earth

9

Eviden

Indirect Detection

Direct Detection

Indirect Detection – Gamma rays

VERITAS – Ground based

(Very Energetic Radiation Imaging Telescope Array)

- 4 Cherenkov telescopes (12 m)
- Energy range ~150 GeV >30 TeV
- Energy resolution 10-20 %
- Good angular resolution (~ 0.1°)

Looking for enhanced signal from dwarf galaxies

Nothing found so far

F

Evidence

Indirect

Direct Detection

Conclusior

Detection

Indirect Detection – Gamma rays

EGRET - Satellite

(Energetic Gamma Ray Experiment Telescope)

- Part of the Compton Gamma Ray Observatory (NASA satellite; energy range 20 keV – 30 GeV)
- EGRET: 20 30 GeV (relevant range for WIMP signal)

Evidenc

11

Indirect Detection - Positrons

PAMELA – Satellite Experiment (2006-2011) (Payload for Antimatter Matter Exploration and Light nuclei Astrophysics)

- ToF scintillator
- Gas tracker with Si detectors / magnetic field
- Calorimeter

³He n counter to distinguish lepton/hadron showers
 p
 ³He n counter to distinguish lepton/hadron showers
 p
 ³He n counter to distinguish lepton/hadron showers
 e⁺ 50-190 GeV, p up to 1 TeV
 e⁺ 50-300 GeV, e up to 1 TeV
 e⁺ 50-300 GeV, e up to 500 GeV (2 TeV from calorimeter)
 Light Nuclei (He, Be, C) up to 200 GeV/n, AntiNuclei search

Indirect Detection

Direct Detectior

Indirect Detection – Electrons/Positrons

ATIC – Balloon Experiment

(Advanced Thin Ionization Calorimeter)

- Si pixel detector (charge)
- Passive graphite target w/ 3 scint. layers
- BGO calorimeter (8 layers, xy)

Separation between leptons and hadrons but not particle – antiparticle

Eviden

Indirect Detectior

Direct Detection

Conclusior

Indirect Detection – Electrons/Positrons

Fermi LAT – Satellite (Large Area Telescope)

- Gamma ray telescope, but also sensitive to electrons
- Energy range (e): 20-800 GeV $\Delta E \approx 10\%$ @ 100 GeV
- Angular resolution: ~ 0.1°
- Si/W tracker
- Csl calorimeter
- anti-coincidence plastic scintillator

Evidence

Indirect Detection

Direct Detection

F

Indirect Detection – Electrons/Positrons

H.E.S.S. – Ground based (High Energy Stereoscopic System)

- 4 Cherenkov telescopes (~ 12 m)
- Designed for high energy gamma rays but can also be used to measure electrons and hadrons
- Energy range (e⁻) ~340 GeV 5 TeV
- Energy resolution ~ 15 %

Indirect

Direct

Detection

Detection

Indirect Detection – Electrons/Positrons

Attempt to fit PAMELA, HESS, Fermi data

(J. Edsjö, Stockholm, one of many attempts, just as example)

- ATIC data not really reproduced by Fermi/H.E.S.S. but no contradiction (large error bars!), so ignore ATIC peak
- Example DM particle: 1.5 TeV, annihilation to $\mu^+\mu^-$

Problem:

need very high annihilation rate, does not fit simple DM halo models

 Need enhancement factor ("boost factor") of order of 1000 substructure of halo (over densities enhance annihilation; x1000 unlikely) particle physics, "Sommerfeld enhancement": increased σ at low velocity

Evidence

Indirect Detection

Direct

Detection

Indirect Detection – LHC (ATLAS)

Produce new heavy particles in pp collisions WIMP invisible (uncharged, does not decay) Look for missing E, p; cannot confirm life time...

Evidence

Indirect Detection

Direct Detection

Conclusior

Direct Detection

Galactic Dark Matter WIMPs:

- Gravitationally bound
 - $\rightarrow v_{\text{WIMP}} \le v_{\text{esc}} \approx 600 \text{ km/s} = 2 \text{ x } 10^{-3} \text{ c}$ (typical v_{WIMP} : 270 km/s $\approx 10^{-3} \text{ c}$)
 - → Significant energy transfer only for nuclear recoils (interact coherently with all nucleons → $\sigma \propto A^2$)
- Typical WIMP mass: 10 1000 GeV/c²
- WIMP density at the Earth: 0.3 GeV/c²/cm³
- Expected interaction cross section: can be estimated from total amount of DM (production in early universe): 10⁻⁹ 10⁻¹⁰ pb, but large uncertainty (couple orders of magnitude)
 - \rightarrow Very rare interactions (< 0.1 evts/kg/d)
- Many more interactions from other sources (background): natural radioactivity (U, Th, K, ...), cosmic radiation
 - \rightarrow Mostly ionizing: electron recoils

Corresponds to 5 WIMPs^{60 GeV} / litre Or 150 g/earth But 150 000/cm²/s Eviden

WIMP Detection - Landscape

19

G

U

WIMP Detection - Background

WIMP Detection - Underground

Evidence

Direct

Direct Detection

- Conventional detectors (ionization, scintillation): signal reduction for nuclear recoils (quenching)
- Most energy converts to thermal energy (lattice vibrations – phonons)
- Measure thermal signal
- Combine with conventional technology: discrimination of BG

Direct Detection

Conclusion

22

Cryogenic Dark Matter Search

Cryogenic ionization detectors, Ge (Si)

- \varnothing = 7 cm, h = 1 cm, m = 250 g (100 g)
- Thermal readout: superconducting phase transition sensor (TES)
- Transition temperature: 50 100 mK
- 4 sensors/detector, fast signal (< ms)
- Charge readout: Al electrode, divided

Evidence

ndirec:

Direct

Cryogenic Dark Matter Search

Evidence

Direct

Conclusior

ł

F

CDMS at Soudan

Evidence

Indirect

Direct Detection

CDMS Results

NO significant evidence for WIMP signal

• Data from Jun. 2007 – end 2008

- Raw exposure: ~ 600 kg days
- Analysis threshold: 10 keV
- Main analysis steps:
 - Determine position dependent calibration/timing performance
 - Remove periods with bad detector performance
 - Remove multiple scatter & muon veto events
 - Remove surface events (timing)
 - Expected background:
 - 0.8 (surface) events + 0.1 (neutrons)
- 120 kg days after cuts
- 2 events observed!

27

Direct Detection Conclusion

SuperCDMS at Soudan

- Increase thickness / mass of single module
 (1 cm, 230 g / module → 1 inch, ~ 630 g / module)
- New sensor designs
- First type (new phonon sensor design) tested at Soudan
- Second type (new electrode design) being installed for test
- Aiming for 10-15 kg total
- → Reduce background, increase exposure, gain x10 in sensitivity

Evidence

Direct

Detection

SuperCDMS at SNOLAB

Move to SNOLAB

- Less Cosmic radiation
- Cleaner environment
- Good infrastructure

SuperCDMS Setup at SNOLAB (planned)

- Detector volume holds ~100 kg of active target
- Pb/Cu shielding against external radiation
- Increased PE shielding against neutrons
- Considering active neutron veto detector

29

Direct Detection

EVIDE

<u>CRESST</u>

Cryogenic scintillatior, CaWO₄ (Gran Sasso)

- \varnothing = 4 cm, h = 4 cm, m = 300 g
- Thermal readout: TES

- Transition temperature: 7 15 mK
- Cryogenic light detector (Al₂O₃/Si)
- Reflective housing
- Setup holds up to 10 kg
- Presently 9 detectors (~ 3 kg) running, 120 kg d collected

30

Evidence

Direct Detection

EDELWEISS

Cryogenic detectors, Ge (Modane)

- \varnothing = 7 cm, h = 2 cm, m = 320 g
- Thermal readout: NTD

- Operation temperature: 15 20 mK
- 93 kg d, 3 background events
- New detectors with different electrode concept to remove surface events

Electrode

- Very good performance
- Considerable improvement: 160 kg d, 1 event
- ~800 g detectors operational

Direct Detection

<u>XENON</u>

Liquid Xenon (Gran Sasso)

F

- Scintillation and ionization (drift electrons to surface, produce secondary scint. in gas phase)
- Good position reconstruction
- 1st phase: 10 kg (320 kg d, 10 evts)
 2nd phase: XENON100 (~50 kg fid)
 160 kg d, no events

Evidence

Indirec:

Direct

Detection

<u>DEAP</u>

Liquid Argon (SNOLAB)

(Dark matter Experiment with Ar using PSD)

- Total target mass 3600 kg (1000 kg fiducial)
- Pulse Shape analysis for background suppression
- 7 kg prototype operating
- Full scale is funded

T

F

- Installation at SNOLAB started in 2009
- Final sensitivity: ~10⁻¹⁰ pb

Evidence

Direct Detection

Conclusior

PICASSO

Superheated Freon (C_4F_{10}) droplets (SNOLAB) in a gel matrix; 2.6 kg (32 det)

- Droplets evaporate if energy is deposited
- Only nuclear recoils (and alphas) can evaporate droplets
- Acoustic readout

• Sensitive to spin-dependent interaction

Evidence

Direct

-

F

<u>Results</u>

DAMA/LIBRA

Nal scintillator, 250 kg

Gran Sasso

-

- Data: 7 years (1995-2002), 100 kg (DAMA)
 + 6 years (2003-2009), 250 kg (LIBRA), 1.17 t y
- Obvious oscillation of the rate, correct phase
- Interpretation controversial

Source	Main comment	<i>Cautious upper</i> <i>limit (90%C.L.)</i>
RADON	Sealed Cu box in HP Nitrogen atmosphere	<0.2% S _m ^{obs}
TEMPERATURE	The installation is air- conditioned	<0.5% S _m obs
NOISE	Effective noise rejection	<1% Sm ^{obs}
ENERGY SCALE	Periodical calibrations + continuous monitoring of ²¹⁰ Pb peak	<1% S _m ^{obs}
EFFICIENCIES	Regularly measured by dedicated calibrations	<1% S _m ^{obs}
BACKGROUND	No modulation observed above 6 keV; this limit includes possible effect of thermal and fast neut	d <0.5% S _m ^{obs}
SIDE REACTIONS	Muon flux variation measured by MACRO	<0.3% S _m ^{obs}

/idence

ndirec:

Direct Detection

<u>Results – Spin Dependent</u>

Interaction cross section may depend on spin!

SUSY example

37

ction Conclusion

-

V

H

<u>Results – Spin Dependent</u>

38

Alternative Explanations

Channelling

- \rightarrow Energy scale for NR equal to ER
- → Allowed signal region moves to lower masses

- Channelling model not fully worked out, effect probably (much?) smaller
- No indication for channelling in CDMS (needs more careful analysis!)
- Some experiments are starting to explore low mass region (CoGeNT, TEXONO, CDMS)

39

Evidence

ndirec:

Direct Detection

<u>CoGeNT</u> Evidence for Dark Matter?

- Low threshold high resolution Ge detector
- Ultra low background
- No discrimination
- Observe rise in spectrum at low energy
- χ²/dof for 'no WIMP' hypothesis: 20.4/20
- Claim that fit with WIMPs is better (give example for fit with χ^2 /dof = 20.1/18)
- Show preferred region
- Tension with CDMS Si data (PhD thesis by J. Filippini, no paper published yet)

40

didates Indirect Direct Detection

Conclusion

Evidence

Alternative Explanations

Axion-like particles

Evidence

Indirect

Direct Detection

Alternative Explanations

Electron-interacting dark matter

- Dark matter particle cannot transfer significant energy to electron at rest
- BUT: some electrons in atom have high momentum
 → keV energies possible
- Needs a more careful study of other experiments (CDMS has rather low ER background, but energy transfer in Ge might be lower than in lodine)

Evidence

Direct

Detection

Conclusior

E

Alternative Explanations

Inelastic dark matter

- WIMP has low energy (~100 keV) excited state
- Lead to large oscillation fraction (up to 100 % instead of only a few % for standard WIMP interactions
- Makes it more difficult for some other experiments to detect
- High mass nuclei are more sensitive, e.g. Win CRESST

Evidence

Direct

Conclusion

- The Dark Matter problem is one of the most compelling problems in present day fundamental science
- Need to find what 85 % of the matter in the universe is
- WIMPs are prime candidates for Dark Matter
- Indirect detection via annihilation products from space
- Direct detection via nuclear recoils in terrestrial detectors
- Low rate expected background reduction is essential
- Need to go underground
- No convincing signal has been found yet
- Controversial claim by DAMA/LIBRA (inconsistent with other experiments under most reasonably assumptions, some still need testing/analysis)
- Sensitivity of experiments is reaching interesting range
- First ton scale experiments are being build

Evidence

"DR. GRUBER IS CONVINCED THAT IF DARK MATTER IS REALLY DARK, IT SHOULD BE VISIBLE IN THE DAYTIME."