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Accelerators
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neutrino…at the relevant mass range of 15-65 eV.”

“…angle θτμ mixes adjacent generations. It is analogous to 
θ23 in the quark sector…. The pattern of the charged lepton 
mass ratios is not very much different from that of the quark 

mass ratios. Most theoretical models expect mixing angles to 
be somehow related to fermion masses.”

AND

5

1000 lb Gorilla

CKM Matrix, graphically
  “Most likely the solar neutrino problem has nothing whatsover to 
do with particle physics. It is a great triumph that astrophysicists 
are able to predict the number of B8 neutrinos coming from the 

sun as well as they do, within a factor of 2 or 3.” 
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Initial Ideas
• The idea to use pion decays (produced 

in accelerators) as source of neutrinos 
was initially proposed independently by 
Pontecorvo and Schwartz in the 1950ʼs

• The motivation focused on clean study 
of weak decays (Schwartz) and also on 
specific study of studying νμ interactions 
(Pontecorvo) 
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No electrons observed, only muons
Hence there must be at least 2 neutrinos, νμ and νe
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G.Danby et al., Phys. Rev. Lett. 9, 36 (1962)
No electrons observed; thus neutrinos from π 

decay do not produce electrons

Mel Schwartz with spark chamber 
used in the experiment

The principal authors:
Steinberger, Schwartz, Lederman
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Key later developments
• Van der Meer idea for a focusing device

• Greatly increased the desired neutrino flux
• Done by a pulsed toroidal magnetic field

• Extraction of accelerated proton beam
• Allowed greater intensities
• Allowed greater flexibility in target and focusing
• Allowed creation of 0o neutrino beams

• Significant increase in the accelerated 
proton intensity and energy
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The primary source of accelerator νʻs are decays of π 
and K mesons produced  by the accelerated protons 

The main sources:
π + → µ+ + νµ BF = 99.99%
K + →π + + νµ BF = 63.44%

Secondary sources (last 2 important for νeʼs):
K + →π 0 + µ+ + νµ BF = 3.32%
K + →π 0 + e+ + νe BF = 4.98%
µ+ → e+ + νe + ν µ BF =~100%
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The neutrinos from π 
decay have at most 42% 

of parent pion energy
Eν < 0.42 x Eπ

But the neutrinos from K 
decay can have 

energies almost up to K 
energy
Eν < EK 
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Target - interact protons, produce π and K mesons
Focusing horns - focus  mesons with desired energies and charge
Decay pipe - allow mesons to decay into neutrinos; vacuum or He

Hadron monitor - used for tuning and monitoring total flux
Absorber - absorb residual protons and undecayed mesons

Muon monitors - monitor beam; secondary flux determination 
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• We set horn current so as to focus the range of 
the most likely values of pTbeam for p of interest

• Hence pTbeam = pT
horn

θ = pT
beam / p = r / z pT

hornα Bdl = k
1
r∫ r2 = kr

Ampereʼs Law

Parabolic Horn: d=r2

pr / z = kr→ p / z = k

Horn is parabolic
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LE 10 ME HE

3 GeV                  5.5 GeV              8.5 GeV

z = 10cm               100 cm              250 cm

Other effects:
2nd horn

Finite length target
Finite horn length

Secondary interactions                     

Thus as we move target back, we focus higher momenta; but 
due to other effects there are deviations from strict linearity.



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

Magnetic Horn

16from G.Rameika SSI 2010



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

Magnetic Horn

16from G.Rameika SSI 2010

Example of a Real Horn:
NuMI First Horn



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

Magnetic Horn

16from G.Rameika SSI 2010

Example of a Real Horn:
NuMI First Horn



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

Magnetic Horn

16from G.Rameika SSI 2010

Example of a Real Horn:
NuMI First Horn



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

PT - Pz Distributions
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LE100/200kA LE250/200kALE10/200kA

As target is moved back, the pz distribution of 
accepted events shifts to higher values but pT does 

not change very much
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Trajectories
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Beam MC
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Variations
• There are a number of variations on the standard 

conventional (wide band) beam
• Sign selected beam; use a dipole to reject mesons of other 

sign
• Narrow band beam; selects specific Δp
• Beam dump “beam”:

• one variant is a low energy version using ν’s from stopped π and μ  
decays; low energy; well defined spectrum

• other version is high energy; gives high fraction of ν’s from short lived 
particles; useful as a source of ντ’s 

• Off-axis beam; the detector is positioned  at a small angle 
away from the beam axis. This enhances a narrow band of 
neutrino energies 
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Obtaining Energy Spectrum
• Most experiments require knowledge of their 

neutrino energy spectrum to extract physics

• In principle that information can be obtained from 
hadronic (parent) production data

• But currently those data are not adequate and 
there are potential issues with the effect of 
surroundings

• 2 detector configuration, allowing extraction of Far 
Detector flux from Near Detector data appears to 
be the currently favored method to do this for long 
baseline oscillation experiments  

21
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Available Production Data 
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HE Beam

LE10/185kA Beam

Atherton
400 GeV/c p-Be

Barton
100 GeV/c p-C

SPY
450 GeV/c p-Be
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NuMI spectra
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• There are two views regarding Near Detector 

• It should be as identical as possible to the Far Detector in its 
composition

• It should be designed for optimum determination of the 
neutrino flux composition and its energy

• Ideally you would like to have both since each has some 
advantages and disadvantages

• In the first, you may have pileup problems; do not learn the 
composition well  

• In the second you do not learn about nuclear effects, 
detection efficiency, background which may be limiting 
factors in the experiment

24
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Example: MINOS Strategy
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MINOS strategy is to have the two detectors as similar 
as possible to each other

The spectra in the two detectors are similar but not 
identical in the two detectors

The main reasons for the difference is that lower energy 
mesons decay closer to the target (smaller dΩ for ND) 

and give wider angle νʻs in the ND 
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obs

The Far Detector flux can be obtained from:
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General Method

28

P(νµ →νµ ) = 1− sin
2 2θ( )sin2 (1.27Δm2L / E)Two flavor approximation:

sin2 2θ( )

Δm2

Size of dip gives the mixing angle; location of dip Δm2

Parameters used in this example: sin2(2θ) = 1, Δm2= 3.35 x 10-3 eV2

No oscillations

Oscillations
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Near Detector

Far Detector

• Large Mass
– Near: 0.98 kt 
– Far: 5.4 kt 

• As similar as possible
– steel planes

• 2.5 cm thick
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• successive planes 
oriented at 90o

• 1 cm thick
• 4.1 cm wide

– Wavelength shifting 
fibre optic readout

– Multi-anode PMTs
– Magnetised (~1.3 T)

MINOS Detectors

Neutrino beam produced at Fermilab
Near Detector - 1 km from the target

Far Detector - 735 km away and
710 m underground
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Near Detector

Far Detector

• Large Mass
– Near: 0.98 kt 
– Far: 5.4 kt 

• As similar as possible
– steel planes

• 2.5 cm thick
– scintillator strips

• successive planes 
oriented at 90o

• 1 cm thick
• 4.1 cm wide

– Wavelength shifting 
fibre optic readout

– Multi-anode PMTs
– Magnetised (~1.3 T)

MINOS Detectors

Neutrino beam produced at Fermilab
Near Detector - 1 km from the target

Far Detector - 735 km away and
710 m underground

The flux is measured in the Near Detector and then extrapolated to obtain 
prediction in the Far Detector
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CC νμ  Event 

μ-

NC Event 

ν 

e-

CC νe  Event 
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MINOS Eν Spectrum

35

Good agreement with oscillation hypothesis
Alternative hypotheses (decay, decoherence) excluded at a 

significant level >6σ
P.Vahle Neutrino2010
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Alternative Models

36

Decay:

V. Barger et al., PRL82:2640(1999)
Δχ2 = 46.3

disfavored at 6.8σ

G.L. Fogli et al., PRD67:093006 (2003)
Δχ2 = 78.1

disfavored at 8.8σ

Decoherence:
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MINOS Contour

37P.Vahle Neutrino2010

Fit results

The fit accounts for 
the principal 

systematic effects
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SuperK/MINOS

38

MINOS does better 
on Δm2 

determination

SuperK does better 
on the mixing angle

Y.Takeuchi Neutrino2010

2 flavor analysis
All SK data (I, II, and III) are 

used
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Oscillation analysis sin22θ23 (90% C.L.) Δm231 (eV2)

SuperK (2ν, zenith angle) >0.96 2.11+0.11 -0.19 x 10-3

SuperK (2ν, L/E) >0.96 2.19+0.14 -0.13 x 10-3

SuperK (3ν, normal mass 
hierarchy) >0.93 2.11+0.43 -0.12 x 10-3

SuperK (3ν, inverted mass 
hierarchy) 2.51+0.13 -0.42 x 10-3

MINOS >0.91 2.31+0.11 -0.08 x 10-3
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Summary - Atmospheric sector

39

Oscillation analysis sin22θ23 (90% C.L.) Δm231 (eV2)

SuperK (2ν, zenith angle) >0.96 2.11+0.11 -0.19 x 10-3

SuperK (2ν, L/E) >0.96 2.19+0.14 -0.13 x 10-3

SuperK (3ν, normal mass 
hierarchy) >0.93 2.11+0.43 -0.12 x 10-3

SuperK (3ν, inverted mass 
hierarchy) 2.51+0.13 -0.42 x 10-3

MINOS >0.91 2.31+0.11 -0.08 x 10-3

No significant preference on mass hierarchy or CP phase 
seen in SuperK 3 flavor fit

Neutrino2010
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Oscillation to what?
• Both SuperK and MINOS show that νμʻs 

disappear via oscillations
• But being disappearance experiments, 

they do not tell us what is the final state 
neutrino

• Most likely possibility is ντʼs 
• Any significant contribution from νeʼs excluded 

by SuperK (atmospheric), CHOOZ (reactor), 
and MINOS (accelerator)

• Some small contribution from νsterile allowed 
40
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OPERA - 1st Candidate 
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First candidate νμ -> ντ    τ--> π- + π0 

→→
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Issue of sin2(2θ13)  

45
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Mixed (Subdominant) Sector

46

• 3 distinct approaches can be used 
• Reactor experiments (disappearance):

• Simple analysis - only θ13 dependence
• But subtract two large numbers; systematics

• Accelerator experiments (appearance):
• Dependance also on θ23, mass hierarchy, δCP

• Atmospheric and solar experiments:
•  Look for small effects in 3-flavor analyses

Caution: Values (limits) are quoted both for sin2(2θ13) 
-accelerators and reactors, and sin2(θ13) - 3 flavor 
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Reactors - CHOOZ limit 

47

Previous reactor experiments showed no depletion of 
neutrino flux, signature of oscillations

CHOOZ limit: sin2(2θ13)<0.15 (90% C.L.) 
(at Δm231 = 2.3 x 10-3 eV2) 

Previous experiments
Atmospheric sector 
optimum distance

KamLAND

Solar sector 
oscillation curve

CHOOZ Limits

MINOS Δm2 value

CHOOZ Spectra



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School 48

νe Appearance



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School 48

νe Appearance
The probability of νμ->νe transitions depends not only 
on θ13 but also on θ23, θ12, δCP and mass hierarchy 



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School 48

νe Appearance
The probability of νμ->νe transitions depends not only 
on θ13 but also on θ23, θ12, δCP and mass hierarchy 
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  In matter, νe’s interact differently than other flavor 
neutrinos because of additional interaction with 
electrons 

  νe

  νe

e

e
W  νx   νx

Z
e e

As a result, the transition νµ->νe will be enhanced for 
normal hierarchy and suppressed for inverse hierarchy. 
Opposite will be true for antineutrinos.

 Thus this is a means of distinguishing between the 
two hierarchies. The effect increases with energy. For 
MINOS (735 km) it is about 30% difference
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νe appearance - MINOS 
• The principal challenge is reduction and 

prediction of background (mainly NC)
• A neural network (ANN) consisting of several 

variables characterizing topology of the event 
is used to distinguish NC and CC 
backgrounds from νe signal

• The ANN distribution in the Near Detector is 
then used to optimize the cuts and predict the 
background in the Far Detector  

50
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• Use 11 shape variables in a Neural Net 
(ANN) which characterize event topology

• Apply selection to ND data to predict 
background level in FD

Analysis strategy

•  Data
⎯  MC

νe 
 selected 
region
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• Based on ND data, expect: 49.1±7.0
(stat.)±2.7(syst.)
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54 observed, 0.7σ excess

The ND analysis predicts:

events in the Far Detector
49.1±7.0(stat.)±2.7(syst.)
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Normal hierarchy

Inverted 
hierarchy

MINOS Result

54

The 90% C.L. limits are:
sin2(2θ13) < 0.12 (normal)
sin2(2θ13) < 0.20 (inverse) 

for 
sin2(2θ23) = 1, δCP = 0,

|Δm231| = 2.43 x 10-3 eV2
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Oscillation 
analysis

sin2θ13 
(value)

sin2θ13 
(90% CL)

sin2θ13 
(95% CL)

SuperK 
(atmospheric,norm) 0.006+.030-.006 <0.066

SuperK 
(atmospheric,inv) 0.044+.041-.032 <0.122

SuperK 
(solar,global) 0.025+.018-.016 <0.059

SNO (solar,global) 0.020+.021-.016 <0.057
MINOS (normal) at 

δCP=0 0.007+.014-.007 <0.03
MINOS (inverted) 

at δCP=0 0.015+.021-.013 <0.05
CHOOZ <0.037

0       0.02     0.04     0.06

sin2θ13

CHOOZ
limit
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LSND Experiment
• The experiment uses neutrinos produced 

in the proton beam dump
• The relevant steps are as follows:

57

p + Cu -> π-, π+,... 

π- stops and is captured by a nucleus; no neutrinos

π+ stops; decays: π+->µ++νµ

µ+ stops; decays: µ+->e++νµ+νe

 Note that no νe are produced in these processes 
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LSND Effect

58

If effect is due to oscillations, there must be a 4th, 
sterile, neutrino

Oscillation interpretationApparent νμ -> νe transition 

R. Van de Water  Nu2010
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Backgrounds
• Signal to background ratio is low so 

understanding backgrounds well is crucial
• Sources of backgrounds:

• Non-beam (cosmic) - measured during off-beam time 
(duty cycle is ~7%)

• Accidentals from cosmic and beam - can be 
calculated from off-beαm measurements - small

• Beam related - main source νe from π-,μ- decay chain
• π- decays in flight (produced upstream?)
• underestimate of π- production (Anastasiaʼs poster)

• 59
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MiniBooNE was designed to test the LSND result
It uses a neutrino beam produced by Fermilab Booster

L/E is similar to that in LSND but L and E are roughly an 
order of magnitude larger; different systematics

Booster

K+

target and horn detectordirt decay region absorber

primary beam tertiary beamsecondary beam
(protons) (mesons) (neutrinos)

π+ νµ  → νe ???

Both neutrino and antineutrino exposures were obtained
Antineutrino run tests the LSND directly
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More data are needed to resolve these issues

LSND Region

Neutrinos

Neutrinos: Excess of electrons (γʼs?) below 475 MeV
No excess of events in the LSND region

Antineutrinos

LSND Region

Antineutrinos: Small excess below 475 MeV 
Excess of events in LSND region

R. Van de Water  Nu2010
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MINOS Search
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MINOS can search for sterile neutrinos in a different 
L/E domain than LSND/MiniBooNE
(small Δm2 and large mixing angle)

MINOS looks for depletion of neutral current (NC) 
events in the Far Detector compared to prediction 

from the Near Detector

The result has a mild dependence on the assumption 
regarding θ13 since νe events would be classified as NC

In the conventional oscillation picture there should be 
no depletion of NC events
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Spectrum of NC events in FD 
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No depletion seen
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MINOS Result

64

Define:   R=
Ndata −BG

SNC
1.09 ±0.06 (stat.)±0.05 (syst.)

(no νe appearance)
1.01 ±0.06 (stat.)±0.05 (syst.) 

(with νe appearance)

fs ≡
Pνµ →νs

1− Pνµ →νµ

< 0.22 (0.40) at 90% C.L.Limit on fraction, fs, of 
oscillated νμ converting to νs:

Spectrum of NC events in FD 

P.Vahle Neutrino2010

Expect (no νe): 757 events

No depletion seen
Observe:          802 events
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π-

π+

Target Focusing Horns

2 m

675 m

νµ

νµ

15 m 30 m
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• This is due to the higher production of π+ and 

higher cross section of ν
• It helps significantly to have B field in the detector 

67

Neutrino mode
Horns focus π+, K+

Monte Carlo
Monte Carlo

Antineutrino mode
Horns focus π-, K-
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MINOS Result

68

MINOS took 1.7E20 protons on target in νμ mode

P.Vahle Neutrino2010

Δm2 = 3.36−0.40
+0.45 ×10−3eV2

sin2 (2θ) = 0.86 ± 0.11

There is a plan to increase the 
data set to 4E20 POT
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What Does it Mean?
• The difference could be due to a 

statistical fluctuation (~2σ)
• The oscillation parameters must be the 

same in these two cases by CPT
• But the two situation are not related by 

the CPT transformation (no anti-earth)
• Neutrinos and antineutrinos could have 

different anomalous interactions in the 
earth

69



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

ν/ν in the Solar Sector

70



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

ν/ν in the Solar Sector

70

Solar includes all solar experiments (3 phases of SNO, 
SuperKamiokande, Chlorine, Gallium and Borexino)



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

ν/ν in the Solar Sector

70

Solar includes all solar experiments (3 phases of SNO, 
SuperKamiokande, Chlorine, Gallium and Borexino)

2ν model

ν ν



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

ν/ν in the Solar Sector

70

3ν model

Solar includes all solar experiments (3 phases of SNO, 
SuperKamiokande, Chlorine, Gallium and Borexino)

2ν model

ν ν



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

ν/ν in the Solar Sector

70

3ν model

Solar includes all solar experiments (3 phases of SNO, 
SuperKamiokande, Chlorine, Gallium and Borexino)

2ν model

ν ν

Thus identity is only verified to a factor of 2 (at 1σ level) 
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NOvA Beamline and Location

Existing beamline (NuMI) at Fermilab
New Detector on a new site

Data taking might start in early 2013
with partial detector

Ash River
NOvA
NOvA MINOS

Accelerator Efforts

New accelerator (JPARC) and new 
beamline

Existing detector (SuperKamiokande)

Data taking stated in spring of 2010
with reduced (50 kW) intensity
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Τhe Goals
• The principal goal of these next generation of 

experiments is to improve on our knowledge 
of sin2(2θ13) with a sensitivity ~0.01 

• Both neutrino and antineutrino runs are 
contemplated

• By combining the results of these experiments 
with those of the reactor experiments one can 
also obtain information on other parameters.

• If sin2(2θ13) is large enough, NOvA can also 
determine the mass hierarchy

74
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CHOOZ limit

T2K: Assumes 5 years at 750 kW, 22.5 
kton fiducial volume

P.Litchfield, SSI2010

T2K Sensitivities
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T2K First Events 
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One of first events - νμ

Event in the fine grained Near 
Detector at 280m
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ΝΟvA Detector
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1 cell
L=15.7 m, W=4 cm, D=6 cm

Full-size Modules

700kW
15kt Liquid Scintillator

NOvA

1 module = 32 cells
12 modules make a plane

Vertical and horizontal planes alternate
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The Near Detector
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4.1 
m

2.9 m

14.4 m

   The Near 
Detector will be

placed off-axis in 
the MINOS

access tunnel. 
209 T

126 T totally 
active

23 T fiducial

Veto region
Target region
Shower containment region

Muon catcher
1 m iron

Slide from G.Feldman
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NOvA Far Detector Site - ~3 months ago
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NOvA More Recently

81

!"#$%&'()"**+$,-.$/010$ 23$

NOvA Far Detector Building 

Data taking: mid-2012 

Detector complete: mid-2013 
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ΝΟνA Events (MC)
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Longitudinal sampling is 0.2 X0

A 2 GeV muon goes through 60 planes
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Sensitivities

83

95% Resolution of Mass Ordering
NOvA and T2K combined

Normal Hierarchy        

NOvA: Assumes 3 years ν+ 3 
years anti-ν, 10% systematic

The long distance (810 km) gives it 
some sensitivity to mass hierarchy Inverted hierarchy
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Long Baseline Neutrino Expt
• The initial project is decoupled from the 

major accelerator upgrade - project X
• Hope for construction start in 2014, 

physics start in 2020 (700 kW)
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New proposed neutrino beam line
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Water or Argon?

86

Argon detection efficiency about 5-6 times higher 
because of much better background rejection

A variety of issues need to be considered before an 
informed decision can be made

from G.Rameika SSI 2010
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Plans Elsewhere
• Japanese plans are focused currently 

on a new detector in current JPARC 
beam line

• Most likely .5-1.0 Mt Water Cerenkov
• European plans are uncertain at this 

time
• A number of sites have been proposed 

for a potential underground laboratory

89



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

Neutrino Cross Sections

90



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

Why Cross Sections?

91



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

Why Cross Sections?
• Study of neutrino cross sections is important for its own 

(physics) sake but also for interpretation of other 
experiments 

91



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

Why Cross Sections?
• Study of neutrino cross sections is important for its own 

(physics) sake but also for interpretation of other 
experiments 

• Physics arguments
• Verification of Standard Model
• Determination of structure functions
• Determination of fundamental parameters
• Study of intra-nuclear interactions

91



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

Why Cross Sections?
• Study of neutrino cross sections is important for its own 

(physics) sake but also for interpretation of other 
experiments 

• Physics arguments
• Verification of Standard Model
• Determination of structure functions
• Determination of fundamental parameters
• Study of intra-nuclear interactions

• Interpretation of other experiments
• Understanding of backgrounds
• Determination of neutrino flux
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Ingredients

92

No signal events α  x-section x flux x target mass

= (Nobs-Nbknd)/efficiency No signal events 
Flux measurement of a neutrino beam is hard

Here are some possibilities:
1) Measure hadronic production; count protons on target

2) Normalize to a known neutrino cross section
3) Measure flux of muons (or hadrons in decay pipe)

None of these is easy; they all present some 
difficulties



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

Two Examples

93



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

Two Examples

93

Examples of possible normalization problems



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

Two Examples

93

Examples of possible normalization problems



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

Two Examples

93

Examples of possible normalization problems



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

Exclusive X-sections

94



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

Exclusive X-sections

94

• For some purposes it is important to 
measure exclusive x-sections and/or 
their differential distributions



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

Exclusive X-sections

94

• For some purposes it is important to 
measure exclusive x-sections and/or 
their differential distributions

• Measurement of differential distributions of 
π0ʼs. Important for understanding 
backgrounds in νe appearance experiments



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

Exclusive X-sections

94

• For some purposes it is important to 
measure exclusive x-sections and/or 
their differential distributions

• Measurement of differential distributions of 
π0ʼs. Important for understanding 
backgrounds in νe appearance experiments

• Resonance production. If one uses 
kinematics to deduce neutrino energy, 
misclassifying resonant event as QE leads to 
a wrong energy assignment 



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

MiniBooNE Results

95M.Tzsanov, Nu2010



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

MiniBooNE Results

95M.Tzsanov, Nu2010



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

MiniBooNE Results

95M.Tzsanov, Nu2010



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

MiniBooNE Results

95M.Tzsanov, Nu2010

Significant differences between the measurements 
and the original MC simulation
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MINERvA Experiment
• Dedicated experiment to measure neutrino 

cross sections in the 1-10 GeV range
• Experiment uses NuMI beam
• New fine grained main detector; MINOS 

Near Detector used as muon spectrometer
• The goal is to measure also individual 

contributions: QE, single pion, DIS
• The plan is to use different materials as 

targets to understand A dependence
96
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MINERvA Energy Region
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MINERvA Tracking

Slide from R.Ransome, Rutgers U.
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3 different events; same view
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MINOS uses low y events to determine the relative flux and 
normalized to previous high energy (30-50 GeV) measurements
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Summary
• Accelerator conventional beams have 

been an important element in our 
study of neutrinos

• In many situations they provided 
unique information

• They will continue to play that role in 
the future

• Due to technical innovations, their 
capabilities continue to increase
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Backup Slides
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SuperKamiokande

105

50 kt of water
42m high, 40 m diam
40% PMT coverage
1000m underground

electron
fuzzy edges

muon
sharp edges

Zenith angle and L/E 
distributions are used to 

extract oscillation 
parameters  -1            cosθzenith           +1

Example distributions 

Downward

DownwardUpward

Upward
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But experiments with ν and ν beams are generally not 
related by CPT because of passage through matter

The current data do not constrain the equality of oscillation 
parameters in the solar sector to better than ~2 

Parameters of ν and ν have to be equal by CPT

The situation in the νμ sector is made difficult by the fact 
that νμ contamination in a νμ beam is generally rather high. 
Thus independent verification of muon charge is helpful    

Magnetic field in its detectors makes MINOS 
particularly suitable for νμ/νμ comparison



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

MINOS Search

107



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

MINOS Search

107

MINOS can search for sterile neutrinos in a different 
L/E domain than LSND/MiniBooNE
(small Δm2 and large mixing angle)



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

MINOS Search

107

MINOS can search for sterile neutrinos in a different 
L/E domain than LSND/MiniBooNE
(small Δm2 and large mixing angle)

MINOS looks for depletion of neutral current (NC) 
events in the Far Detector compared to prediction 

obtained from the measured rate in the Near Detector



Stanley Wojcicki IV International Pontecorvo Neutrino Physics School

MINOS Search

107

MINOS can search for sterile neutrinos in a different 
L/E domain than LSND/MiniBooNE
(small Δm2 and large mixing angle)

MINOS looks for depletion of neutral current (NC) 
events in the Far Detector compared to prediction 

obtained from the measured rate in the Near Detector

In the conventional oscillation picture there should be 
no depletion of NC events


