Light neutrinos in Cosmology (II)

Sergio Pastor (IFIC Valencia)

IV Int. Pontecorvo Neutrino Physics School Alushta, October 2010

Picture from Hubble ST

V

Light neutrinos in Cosmology 2nd lecture

Massive neutrinos as Dark Matter

Effects of neutrino masses on cosmological observables

Bounds on m, from CMB, LSS and other data

Future sensitivities on m_v and N_{eff} from cosmology

Neutrinos as Dark Matter

Relic neutrinos influence several cosmological epochs

We know that flavour neutrino oscillations exist

From present evidences of oscillations from experiments measuring atmospheric, solar, reactor and accelerator neutrinos

Evidence for Particle Physics beyond the Standard Model !

Mixing Parameters...

From present evidences of oscillations from experiments measuring atmospheric, solar, reactor and accelerator neutrinos

Mixing Parameters...

... and neutrino masses

Possible neutrino mass hierarchy patterns

$$\nu_{\alpha L} = \sum_{i=1}^{3} U_{\alpha i} \nu_{iL}, \quad (\alpha = e, \mu, \tau)$$

Present evidences for flavour neutrino oscillations: data on solar, atmospheric, reactor and accelerator neutrinos

... and neutrino masses

Data on flavour oscillations do not fix the absolute scale of neutrino masses

Evolution of the background densities: 1 MeV \rightarrow now

The Cosmic Neutrino Background

Neutrinos decoupled at T~MeV, keeping a spectrum as that of a relativistic species
$$f_v(p,T) = \frac{1}{e^{p/T_v}}$$

• Number density

At present $112(v + \overline{v}) \text{ cm}^{-3}$ per flavour

Energy density

Neutrinos as Dark Matter

Neutrinos are natural DM candidates

$$\Omega_{v}h^{2} = \frac{\sum_{i}m_{i}}{93.2 \text{ eV}} \quad \Omega_{v} < 1 \rightarrow \sum_{i}m_{i} < 46 \text{ eV}$$

$$\Omega_{v} < \Omega_{m} \approx 0.3 \rightarrow \sum_{i}m_{i} < 15 \text{ eV}$$

 They stream freely until non-relativistic (collisionless phase mixing)
 Neutrinos are HOT Dark Matter

 First structures to be formed when Universe became matter -dominated are very large

Ruled out by structure formation CDM

Neutrinos as Hot Dark Matter

Massive Neutrinos can still be subdominant DM: limits on m_{ν} from Structure Formation (combined with other cosmological data)

baryons and CDM (matter) experience gravitational clustering

baryons and CDM (matter) experience gravitational clustering

baryons and CDM (matter) experience gravitational clustering

baryons and CDM (matter) experience gravitational clustering

growth of $\delta \rho / \rho$ (k,t) fixed by gravity vs expansion balance

 $\Rightarrow \delta
ho /
ho$ a a

neutrinos experience free-streaming with v = c or /m

baryons and CDM (matter) experience gravitational clustering

neutrinos experience free-streaming with v = c or /m

neutrinos

experience

free-streaming

with

 $v = c \text{ or } \langle p \rangle / m$

baryons and CDM (matter) experience gravitational clustering

neutrinos cannot cluster below a diffusion length

 $\lambda = \int v dt < \int c dt$

neutrinos experience free-streaming with v = c or /m

for $(2\pi/k) < \lambda$, free-streaming supresses growth of structures during MD

with $f_v = \rho_v / \rho_m \approx (\Sigma m_v) / (15 \text{ eV})$

Neutrinos as Hot Dark Matter

Massive Neutrinos can still be subdominant DM: limits on m_v from Structure Formation (combined with other cosmological data)

Z=32.33

S. Hannestad, Cosmology Group, Univ. Aarhus

Power Spectrum of density fluctuations

Neutrinos as Hot Dark Matter: effect on P(k)

Massive Neutrinos can still be subdominant DM: limits on m_v from Structure Formation (combined with other cosmological data)

• Effect of Massive Neutrinos: suppression of Power at small scales

Lesgourgues & SP, Phys. Rep. 429 (2006) 307

Cosmological observables: LSS

Cosmological observables : LSS

Cosmological observables: CMB

CMB temperature/polarization anisotropies \Rightarrow photon power spectra

CMB TT DATA

Effect of massive neutrinos on the CMB spectra

1) CMB spectrum essentially unchanged if neutrinos become NR AFTER photon decoupling (z_{rec} ~1089)

$$1 + z_{\rm nr} = \frac{T_{\nu,\rm nr}}{T_{\nu,0}} \\ = 1.99 \times 10^3 (m_{\nu}/{\rm eV}) \\ = 6.24 \times 10^4 \omega_{\nu},$$

Neutrinos become NR BEFORE recombination if:

$$\omega_{\nu} \gtrsim 0.017 \implies \sum_{i} m_{\nu_{i}} \gtrsim 1.6 \text{ eV}$$

More details including effects of neutrino mass on "reduced CMB observables" in Ichikawa et al, PRD 71 (2005) 043001

Effect of massive neutrinos on the CMB spectra

- 1) CMB spectrum essentially unchanged if neutrinos become NR AFTER photon decoupling.
- 2) Impact on CMB spectra is indirect: non-zero Ω_v modifies the background evolution (change in equality time)

Ex: in a flat universe, keep $\Omega_{\Lambda} + \Omega_{cdm} + \Omega_{b} + \Omega_{v} = 1$ constant

Effect of massive neutrinos on the CMB spectra

Problem with parameter degeneracies: change in other cosmological parameters can mimic the effect of nu masses

Bounds on m_v from CMB, LSS and other data

Neutrinos as Hot Dark Matter

Massive Neutrinos can still be subdominant DM: limits on m_{ν} from Structure Formation (combined with other cosmological data)

How to get a bound (measurement) of neutrino masses from Cosmology

Fiducial cosmological model: $(\Omega_{b}h^{2}, \Omega_{m}h^{2}, h, n_{s}, \tau, \Sigma m_{v})$

Cosmological Data

• CMB Temperature: WMAP plus data from other experiments at large multipoles (CBI, ACBAR, VSA...)

- CMB Polarization: WMAP,...
- Large Scale Structure:

* Galaxy Clustering (2dF,SDSS)

* Bias (Galaxy, ...): Amplitude of the Matter P(k) (SDSS, σ_8)

* Lyman-a forest: independent measurement of power on small scales

* Baryon acoustic oscillations (SDSS)

Bounds on parameters from other data: SNIa ($\Omega_{\rm m}$), HST (h), ...

Cosmological Parameters: example

Parameter	Meaning	Status
τ	Reionization optical depth	Not optional
ω_b	Baryon density	Not optional
ω_d	Dark matter density	Not optional
f_{ν}	Dark matter neutrino fraction	Well motivated
Ω_{Λ}	Dark energy density	Not optional
w	Dark energy equation of state	Worth testing
Ω_k	Spatial curvature	Worth testing
A_{s}	Scalar fluctuation amplitude	Not optional
n_s	Scalar spectral index	Well motivated
α	Running of spectral index	Worth testing
r	Tensor-to-scalar ratio	Well motivated
n _t	Tensor spectral index	Well motivated
Ь	Galaxy bias factor	Not optional

SDSS Coll, PRD 69 (2004) 103501

Cosmological bounds on neutrino mass(es)

A unique cosmological bound on m_v DOES NOT exist !

Cosmological bounds on neutrino mass(es)

A unique cosmological bound on m, DOES NOT exist!

Different analyses have found upper bounds on neutrino masses, since they depend on

- The combination of cosmological data used
- The assumed cosmological model: number of parameters (problem of parameter degeneracies)
- The properties of relic neutrinos

Current cosmological bounds on neutrino masses

González-García et al., JCAP 08 (2010) 117

Current cosmological bounds on neutrino masses

		CMB+	HO+SN+BAO	CMB+HO+SN+LSS-PS			
	best	1σ	95% CL	best	1σ	95% CL	
$H_0 \ {\rm km/s/Mpc}$	76.2	$^{+3.0}_{-2.8}$	$^{+5.7}_{-5.6}$	74.4	$^{+2.8}_{-2.9}$	$^{+5.6}_{-5.6}$	
$\Omega_b h^2 \times 100$	2.205	$^{+0.057}_{-0.050}$	$^{+0.103}_{-0.105}$	2.239	$^{+0.059}_{-0.046}$	$^{+0.095}_{-0.108}$	
$\Omega_c h^2$	0.131	$^{+0.018}_{-0.013}$	$+0.036 \\ -0.023$	0.128	$^{+0.024}_{-0.009}$	$^{+0.042}_{-0.018}$	
n_S	0.961	$^{+0.021}_{-0.015}$	$^{+0.040}_{-0.030}$	0.971	$^{+0.019}_{-0.017}$	$^{+0.037}_{-0.033}$	
au	0.086	$^{+0.011}_{-0.015}$	$+0.026 \\ -0.028$	0.083	$^{+0.016}_{-0.011}$	$+0.030 \\ -0.023$	
σ_8	0.787	$^{+0.091}_{-0.073}$	$^{+0.135}_{-0.179}$	0.824	$^{+0.051}_{-0.048}$	$^{+0.097}_{-0.105}$	
Ω_k	-0.006	$^{+0.010}_{-0.009}$	$-0.022 \leq \Omega_k \leq 0.016$	-0.011	$^{+0.008}_{-0.009}$	$-0.028 \leq \Omega_k \leq 0.007$	
ω	-1.17	$^{+0.19}_{-0.21}$	$-0.62 \leq \omega + 1 \leq 0.18$	-1.12	$^{+0.21}_{-0.20}$	$-0.57 \le \omega + 1 \le 0.26$	
$\Delta N_{ m rel}$	1.2	$^{+1.1}_{-0.61}$	$0.08 \leq \Delta N_{\rm rel} \leq 3.2$	1.3	$^{+1.4}_{-0.54}$	$0.21 \leq \Delta N_{\rm rel} \leq 3.6$	
$\sum m_{\nu}$ (eV)		≤ 0.77	≤ 1.5		≤ 0.37	≤ 0.76	

González-García et al., JCAP 08 (2010) 117

Cosmological bounds on neutrino masses using WMAP

Dependence on the data set used:

Cosmological data set	With WMAP3	Σ bound (2σ)
WMAP		$< 2.3 \ \mathrm{eV}$
WMAP + SDSS		< 1.2 eV
$WMAP + SDSS + SN_{Riess} + HS'$	$\Gamma + BBN$	$< 0.78~{\rm eV}$
$CMB + LSS + SN_{Astier}$		$< 0.75 \ \mathrm{eV}$
$CMB + LSS + SN_{Astier} + BAO$		$< 0.58~{\rm eV}$
$CMB + LSS + SN_{Astier} + Ly-\alpha$		$< 0.21 \ \mathrm{eV}$
$CMB + LSS + SN_{Astier} + BAO$ -	- Ly- α	$< 0.17 \ {\rm eV}$

Fogli et al., PRD 75 (2007) 053001

Cosmological data set	With WMAP5	Σ (at 2σ)
CMB		< 1.19 eV
CMB + HST + SN-Ia		$< 0.75 \ \mathrm{eV}$
CMB + HST + SN-Ia + BAO		$< 0.60 \ \mathrm{eV}$
$CMB + HST + SN-Ia + BAO + Ly\alpha$		$< 0.19 \ \mathrm{eV}$

Fogli et al., PRD 78 (2008) 033010

Neutrino masses in 3-neutrino schemes

Strumia & Vissani, hep-ph/0606054

Current cosmological bounds on neutrino masses

Dependence on the data set AND the cosmological model used.

Model	Observables	Σm_{ν} (eV) 95% Bound
$o\omega \text{CDM} + \Delta N_{\text{rel}} + m_{\nu}$	CMB+HO+SN+BAO	≤ 1.5
$o\omega \text{CDM} + \Delta N_{\text{rel}} + m_{\nu}$	CMB+HO+SN+LSSPS	≤ 0.76
$\Lambda \text{CDM} + m_{\nu}$	CMB+H0+SN+BAO	≤ 0.61
$\Lambda \text{CDM} + m_{\nu}$	CMB+H0+SN+LSSPS	≤ 0.36
$\Lambda \text{CDM} + m_{\nu}$	CMB (+SN)	≤ 1.2
$\Lambda \text{CDM} + m_{\nu}$	CMB+BAO	≤ 0.75
$\Lambda \text{CDM} + m_{\nu}$	CMB+LSSPS	≤ 0.55
$\Lambda \text{CDM} + m_{\nu}$	CMB+H0	≤ 0.45

González-García et al., JCAP 08 (2010) 117

Tritium β decay, $0\nu 2\beta$ and Cosmology

Non-standard relic neutrinos

The cosmological bounds on neutrino masses are modified if relic neutrinos have non-standard properties (or for non-standard models)

Two examples where the cosmological bounds do not apply

 Massive neutrinos strongly coupled to a light scalar field: they could annihilate when becoming NR

 Neutrinos coupled to the dark energy: the DE density is a function of the neutrino mass (mass-varying neutrinos)

Future sensitivities on m_v and N_{eff} from cosmology

allowed range for N_{eff}

WMAP [7-year], arXiv:1001.4538

Future bounds on N_{eff}

Forecast analysis: Bowen et al, MNRAS 334 (2002) 760

σ[N_{eff}] ~ 3 (WMAP) σ[N_{eff}] ~ 0.2 (Planck)

			Err	or For	ECASTS	\bigcirc	
Experiment	$f_{\rm sky}$	θ_b	$w_T^{-1/2}$	$w_{P}^{-1/2}$	ΔN_{ν}	ΔN_{ν}	ΔN_{ν} (free Y)
			[μ K']	[μ K']	TT	TT+TE+EE	TT+TE+EE
Planck	0.8	7'	40	56	0.6	0.20	0.24
ACT	0.01	1.7'	3	4	1	0.47	0.9
ACT + Planck					0.4	0.18	0.24
CMBPOL	0.8	4'	1	1.4	0.12	0.05	0.09

Example of future CMB satellite Bashinsky & Seljak, PRD 69 (2004) 083002

Future bounds on N_{eff}

	Planck	P+BAO	P+HPS	P+HST	P+HST+BAO	P+HST+HPS
$\omega_{ m dm}$	0.22	0.24	0.20	0.21	0.21	0.19
$N_{ m eff}$	0.21	0.21	0.22	0.21	0.21	0.22
$\sum m_{\nu}$	0.68	0.81	0.44	0.67	0.73	0.44
w	2.14	1.16	0.72	0.74	0.76	0.55
$n_{ m S}$	0.46	0.48	0.49	0.46	0.48	0.48

Table 3: Projected sensitivity of Planck data (P) combined with LSS data to selected parameters of the vanilla+ f_{ν} + N_{eff} +w model. Given are the standard deviations of the marginalised posteriors, normalised to the values obtained with current CMB+HST+HPS data. Note that just like for current CMB data, the addition of BAO data shifts the posterior towards larger neutrino masses, resulting in a two-tailed pdf with a correspondingly larger standard deviation – this does not mean that the constraining power of Planck+BAO is worse than that of Planck alone. The marginalised posteriors of all the other parameters are very close to two-tailed Gaussians, and do not suffer from this effect.

Hamann et al, JCAP 07 (2010) 022

allowed range for N_{eff}

WMAP [7-year], arXiv:1001.4538

allowed range for N_{eff}

WMAP [7-year], arXiv:1001.4538

Future sensitivities to Σm_{v}

Future cosmological data will be available from

CMB (Temperature & Polarization anis.)
 High-z Galaxy redshift surveys
 Hannestad & Wong, JCAP 07 (2007) 004
 Takada et al, PRD 73 (2006) 083520

- o Galaxy cluster surveys Wang et al, PRL 95 (2005) 011302
- Weak lensing surveys (tomography)
 Hannestad et al, JCAP 06 (2006) 025
 Song & Knox, PRD 70 (2004) 063510
- CMB lensing Perotto et al, JCAP 10 (2006) 013
 Lesgourgues et al, PRD 73 (2006) 045021
- Fluctuations in the 21 cm H line
 Loeb & Wyithe, PRL 100 (2008) 161301
 Pritchard & Pierpaoli, PRD 78 (2008) 065009

Forecasts indicate 0.01-0.15 eV sensitivities to Σm, are possible !!

• Fisher matrix analysis: expected sensitivities assuming a fiducial cosmological model, for future experiments with known specifications

Fiducial cosmological model: $(\Omega_b h^2, \Omega_m h^2, h, n_s, \tau, \Sigma m_v) =$ $(0.0245, 0.148, 0.70, 0.98, 0.12, \Sigma m_v)$ Σ m detectable at 2 σ if larger than

0.21 eV (PLANCK+SDSS) 0.13 eV (CMBpol+SDSS)

Lesgourgues, SP & Perotto, PRD 70 (2004) 045016

No bias uncertainty Small scales much closer to linear regime Tomography: 3D reconstruction

Measure a large number of elliptically shaped galaxies

No bias uncertainty Small scales much closer to linear regime Tomography: 3D reconstruction sensitivity of future weak lensing survey (4000°)² to m_v

 $\sigma(m_v) \sim 0.1 \text{ eV}$

Abazajian & Dodelson PRL 91 (2003) 041301

lensing of the CMB signal

Makes CMB sensitive to smaller neutrino masses

sensitivity of CMB (primary + lensing) to m_v

 $\sigma(m_v) = 0.15 \text{ eV}$ (Planck) $\sigma(m_v) = 0.044 \text{ eV}$ (CMBpol)

Kaplinghat, Knox & Song PRL 91 (2003) 241301

CMB lensing: recent forecast analysis

$\sigma(M_v)$ in eV for future CMB experiments alone :

Lesgourgues et al, PRD 73 (2006) 045021

Free parameters:	8]	parameter	s of minimal ΛMI	DM
Lensing extraction:	no	no	yes	yes
Foreground cleaning:	perfect	none	perfect	none
QUaD+BICEP	1.3	1.6	0.31	0.36
BRAIN+ClOVER	1.5	1.8	0.34	0.43
Planck	0.45	0.49	0.13	0.14
SAMPAN	0.34	0.40	0.10	0.17
PLANCK+SAMPAN	0.32	0.36	0.08	0.10
Inflation Probe	0.14	0.16	0.032	0.036
Free parameters:		same -	- $\{lpha, w, N_{ ext{eff}}\}$	
Lensing extraction:	no	no	yes	yes
Foreground cleaning:	perfect	none	perfect	none
QUaD+BICEP	1.5	1.9	0.36	0.40
BRAIN+ClOVER	1.7	2.0	0.42	0.51
Planck	0.51	0.56	0.15	0.15
SAMPAN	0.37	0.44	0.12	0.18
PLANCK+SAMPAN	0.34	0.40	0.10	0.12
Inflation Probe	0.25	0.26	0.035	0.039

"Measuring" even m_v=0.05 eV ?

New cosmological observable as a potential probe of fluctuations at intermediate redshifts (6<z<20) \Rightarrow study of fluctuations in the 21cm line emitted by neutral H

Fig. 5.8. The origin of the hydrogen 21 cm line. The spins of the electron and the proton may be either parallel or opposite. The energy of the former state is slightly larger. The wavelength of a photon corresponding to a transition between these states is 21 cm

Karttunen et al. 2007

"Measuring" even m_v=0.05 eV ?

New cosmological observable as a potential probe of fluctuations at intermediate redshifts (6<z<20) \Rightarrow study of fluctuations in the 21cm line emitted by neutral H

Future sensitivities on Σm_v from 21cm observ.

		$\Omega_m h^2$	$\Omega_b h^2$	Ω_{Λ}	w	n_s	A_s^2	τ	Y_{He}	M_{ν}
	Fiducial	0.147	0.023	0.7	-1	0.95	26.6	0.1	0.24	0.3
	SDSS	0.456	0.083	0.117	1.21	0.503	∞	-	-	6.16
	G1	0.119	0.0207	0.0358	0.574	0.174	∞	-	-	1.28
	G_2	0.0354	0.00593	0.295	1.22	0.0482	∞	-	-	1.01
	G3	0.0252	0.00438	0.0076	0.122	0.037	∞	-	-	0.272
	MWA	0.0317	0.00761	0.972	3.13	0.0487	∞	-	-	0.749
	SKA	0.00191	0.00056	0.234	0.747	0.0054	∞	-	-	0.175
	\mathbf{FFTT}	4.94e-05	$4.77 \mathrm{e}{\text{-}} 05$	0.0045	0.014	0.0002	∞	-	-	0.009
	Planck	0.0045	0.00024	0.068	0.18	0.0074	0.26	0.0048	0.011	0.38
	+SDSS	0.0033	0.00024	0.023	0.11	0.0074	0.254	0.0046	0.0103	0.272
	+G1	0.0016	0.00021	0.013	0.081	0.0068	0.245	0.0044	0.01	0.136
Future	+G2	0.00089	0.00022	0.037	0.149	0.0067	0.243	0.0044	0.0099	0.104
low-v radio	G3	0.00051	0.00016	0.003	0.021	0.0051	0.24	0.0043	0.0081	0.052
talagaabag	+MWA	0.00146	0.00021	0.053	0.17	0.0066	0.242	0.0044	0.010	0.144
Telescopes	+SKA	0.00029	0.00014	0.020	0.065	0.003	0.236	0.0043	0.004	0.080
	+FFTT	4.23e-05	3.97e-05	0.004	0.011	0.0002	0.23	0.0043	0.0030	0.0075
	$\operatorname{CosmicVar}$	0.00244	4.16e-05	0.030	0.033	0.0024	0.124	0.0023	0.0028	0.222
	+FFTT	3.3e-05	2.58e-05	0.0024	0.0076	0.0002	0.111	0.0021	0.0011	0.0068
	'									·

Pritchard & Pierpaoli, PRD 78 (2008) 065009

[also Loeb & Wyithe, PRL 100 (2008) 161301; Mao et al, PRD 78 (2008) 023529]

Summary of future sensitivities

Summary of future sensitivities

Probe	Potential sensitivity (short term)	Potential sensitivity (long term)
CMB	0.4-0.6	0.4
CMB with lensing	0.1-0.15	0.04
CMB + Galaxy Distribution	0.2	0.05-0.1
CMB + Lensing of Galaxies	0.1	0.03-0.04
$CMB + Lyman-\alpha$	0.1-0.2	Unknown
CMB + Galaxy Clusters	-	0.05
CMB + 21 cm	-	0.0003-0.1

Table 1. Future probes of neutrino mass, as well as their projected sensitivity to neutrino mass. Sensitivity in the short term means achievable in approximately 5-7 years, while long term means 7-15 years.

Hannestad, arXiv:1007.0658

End of 2nd lecture

Conclusions

Cosmological observables can be used to bound (or measure) neutrino properties, in particular the sum of neutrino masses (info complementary to laboratory results)

The radiation content of the Universe (N_{eff}) will be very constrained in the near future (Planck)

Current bounds on the sum of neutrino masses from cosmological data (best Σm_v<0.4-0.6 eV, conservative Σm_v<1 eV)

Different cosmological observations in the next future Sub-eV sensitivity (0.1-0.2 eV and better) Test degenerate mass region and eventually the mimimum total mass for IH case