

Solar Neutrinos: Status and Prospects

Mark Chen Queen's University

IV Pontecorvo Neutrino Physics School

These Lectures

- a quasi-historical journey, with flash forward to the present day, looking back at solar neutrino experiments to establish the present day status
 radiochemical, water Čerenkov, liquid scintillator
- □ a look at future prospects
 - new experiments being built and what new physics they will explore
 - brief look at some experiments being proposed
- Note: I have borrowed figures and material from many experiments and many people. Thanks to all of them!

Solar Neutrinos

pp Solar Fusion Chain

Solar Neutrino Pioneers

Ray Davis built the Chlorine Experiment in the 1965-67

John Bahcall produces the "Standard Solar Model" neutrino calculations

"...to see into the interior of a star and thus verify directly the hypothesis of nuclear energy generation in stars..."

Ray Davis' Chlorine Experiment

• neutrino capture reaction:

 $\frac{V_e + {}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar} + e^-}{{}^{37}\text{Ar} + e^- \rightarrow {}^{37}\text{Cl} + V_e}$

- E_{threshold} = 0.814 MeV
- ³⁷Ar half-life is 35 days
- "expose" chlorine to solar neutrino flux for ~2 t_{1/2}
- chemistry to collect/purify ~10 atoms of argon produced in the tank
- count ³⁷Ar EC decays in a low-background proportional counter

615 tons of C₂Cl₄ location: Homestake Mine in South Dakota, USA

Chlorine Results: 1970-1994 (Final)

- average: 2.56 ± 0.23 SNU (Solar Neutrino Unit)
- solar model predicted rate: 7-8 SNU
- 1 SNU = 1 neutrino capture per second per 10^{36} target atoms

Solar Neutrino Problem

- deficit of solar neutrinos detected by experiments compared to solar models is due to:
 - experiment(s) are wrong
 * is Ray Davis wrong?
 - incorrect model/physics of the solar interior
 - * is John Bahcall wrong?
 - incorrect understanding of nuclear reactions?
 - new properties of massive neutrinos produce an *apparent* deficit?

What Experiments Followed?

- radiochemical experiments with gallium
- water Čerenkov detector
- heavy water Čerenkov detector
- liquid scintillator detector
- other ideas that were proposed or attempted:
 - boron-loaded scintillator CC and NC reactions
 - iodine-to-xenon radiochemical experiment
 - lithium-to-beryllium radiochemical
 - bromine-to-krypton radiochemical
 - indium experiment (very low threshold) more on this later
 - fluorine neutrino capture (with coincidence tag)

I will describe the final status of these efforts rather than the chronological contributions to our understanding of solar neutrinos, as the results came to be.

SAGE Experiment

- neutrino capture reaction: $v_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-$
- E_{threshold} = 0.233 MeV
- sensitive to pp solar v
- t_{1/2} is 11.4 days
- germanium atoms are extracted with sensitivity: 1 germanium atom extracted from 5×10²⁹ atoms of gallium, with 90% efficiency

50 tons of metallic gallium location: Baksan Underground Lab, northern Caucasus

SAGE continues to perform regular extractions every ~4 weeks.

SAGE – Soviet American Gallium Experiment

radiochemical Ga experiment at Baksan Neutrino Observatory with 50 tons of metallic gallium running since 1990-present

> measures *pp* solar flux in agreement with SSM when oscillations are included – the predicted signal is

67.3^{+3.9}_{-3.5} SNU

Gallex/GNO Experiment

- similar to SAGE except with gallium chloride
- ran as Gallex (1991-97)
- then as GNO (1998-2003)
- Gallex recently reanalyzed
 all their data
- re-calibrated all lowbackground counters with large Ge spike
- used pulse-shape analysis like for GNO analysis
- improved Rn cut efficiency and background determination

100 tons of gallium chloride solution (30 tons ⁷¹Ga) location: Gran Sasso National Lab in Abruzzo, Italy

Gallex/GNO Results

Summary of Radiochemical Gallium Solar Neutrino Results

- updated Gallex combined: $73.4_{-6.0}^{+6.1}$ $^{+3.7}_{-4.1}$ SNU
- GNO combined: 62.9^{+5.5}_{-5.3} +2.5 SNU
- Gallex+GNO combined: 67.6 ± 4.0_{stat} ± 3.2_{svst} SNU
- SAGE average: 66.2^{+3.3} +3.5 SNU
- both experiments calibrated with neutrino sources; and measured hot chemical extraction efficiency
- they see a clear deficit of the fundamental pp fusion solar neutrinos; results in agreement with each other and with solar model predictions when oscillations are included

Gallex and SAGE Calibrations

FIG. 3: Results of all neutrino source experiments with Ga. Gallex results are from the recent pulse shape analysis of Kaether [9]; SAGE results are from Refs. [11] and [4]. Hashed region is the weighted average of the four experiments.

- all are low?
 - just statistics?
 - efficiency of extraction is incorrect?
 - oscillations cause disappearance?
 - production rate from source (i.e. cross section for absorption) not as large as assumed in calculation?

Outstanding Issues with Gallium?

- calibrations are low?
- time dependence?
 - Gallex (1991-97) runs higher than GNO (1998-2003)
 - same is observed by SAGE
- ...or, is all of this just fine and within experimental errors? Probably.

Energy Dependence of Solar v Deficit

Imaging Water Čerenkov Detectors

o Kamiokande and IMB built in the 80's

- large water Čerenkov detectors that searched for proton decay
- Kamiokande was then upgraded, beginning in 1985, to detect ⁸B solar neutrinos (1st solar v results in 1988)
- Super-Kamiokande (larger and improved) was built and became operational on April 1, 1996
- SNO a heavy water Čerenkov detector was built and started taking production data on November 1, 1999

Masatoshi Koshiba shared 2002 Nobel Prize with Ray Davis (and Giacconi)

Čerenkov Light

- emitted by charged particles whose velocity exceed c/n
- o for electrons in water, threshold:
 E > 0.768 MeV
- o cone of light, half angle given by: cos θ = 1 / (βn); 41° in water for β ≈ 1
- o spectrum of photons emitted:

 $\frac{dN}{d\lambda} = \frac{2\pi c \alpha}{c} \left(1 - \frac{1}{n^2 \beta^2} \right) \frac{1}{\lambda^2}$

5 MeV e⁻ travels ~2 cm in water; ~800 photons produced; 20% average PMT efficiency; 33% photocathode coverage \rightarrow ~50 photoelectrons or 10 p.e./MeV

Kamiokande

Kamiokande ⁸B Solar Neutrinos

- o confirmed deficit of ⁸B solar neutrinos
- flux measured by Kamiokande of 2.67×10⁶ cm⁻² s⁻¹
 compared to solar model calculated flux of ~5-6×10⁶ cm⁻² s⁻¹
- Bahcall and Bethe made the following inference: from the Kamiokande measured flux (of v_e), this would result in at least 3 SNU in the Chlorine experiment
- o at that time, the CI result was 2.2 ± 0.2 SNU (in 1993)

PHYSICAL REVIEW D

0

VOLUME 47, NUMBER 4

15 FEBRUARY 1993

Do solar-neutrino experiments imply new physics?

John N. Bahcall Institute for Advanced Study, Princeton, New Jersey 08540

H. A. Bethe Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853 (Received 24 August 1992)

Interesting to Note...

- o it turns out that today we know that neither of these two possibilities are correct!
- Bahcall-Bethe was a test case hypothesis that refuted a conventional astrophysical solution to the solar neutrino problem
 - they scaled the whole Kamiokande signal as v_e
 - but, today we know how to calculate the actual ⁸B v_e contribution to the Chlorine experiment...by using the SNO charged-current result (more on this later)

Super-K Solar Neutrino Detection

Typical Low Energy Event in SK

Super-Kamlokande

Run 1742 Event 102496 96-05-31:07:13:23 Inner: 103 hits, 123 pE Outer: -1 hits, 0 pE (in-time) Trigger ID: 0x03 E= 9.086 GDN=0.77 COSSUN= 0.949 Solar Neutrino

Time(ns)

< 815
815- 835
835- 855
855- 875
875- 895
895- 915

- 935- 955
- 955-975
 975-995
- 995-1015
- 1015-1035
- 1035-10551055-1075
- 1055-1075
 1075-1095
- 10,3-1095
 >1095

Super-Kamiokande

50 kilotons water; cylinder 39.3 m diameter and 41.4 m high; 11,146 PMT's (20-inch) for 40% photocathode coverage

location: Kamioka mine, near Mozumi, Japan

11146 ID PMTs (40% coverage) Energy Threshold 5.0 MeV (Total energy) ~4.5 MeV (Kinetic energy) 5182 ID PMTs (19% coverage) 7.0 MeV ~6.5 MeV 11129 ID PMTs (40% coverage) 5.0 MeV ~4.5 MeV

Upgrade ~4.5 MeV < 4.0 MeV ~4.0 MeV <~3.5 MeV Current Target

SK-I Solar Neutrino Results

SK-I Energy Spectrum

and D/N asymmetry versus energy

SK-III solar neutrino results

■ Total live time : 548 days, E_{total} ≥ 6.5 MeV 289 days, E_{total} < 6.5 MeV May 2010

Preliminary

- Energy region: E_{total}=5.0-20.0MeV
- ⁸B Flux: 2.32+/-0.04(stat.)+/-0.05(syst.) (x10⁶/cm²/s)
 - SK-I: 2.38+/-0.02(stat.)+/-0.08(syst.)
 - SK-II: 2.41+/-0.05(stat.)+0.16/-0.15(syst.)
 (SK-I,II are recalculated with the Winter06 ⁸B spectrum)
- Day / Night ratio:

 $A_{DN} = \frac{(\Phi_{Day} - \Phi_{Night})}{(\Phi_{Day} + \Phi_{Night})/2} = -0.056 \pm 0.031(\text{stat.}) \pm 0.013(\text{syst.})$

Angular resolution in SK-III is better
 In E_{total}=5.0-5.5MeV, SK-III has better Signal to Noise ratio.
 BG level in 4.5-5.0MeV region is similar as that in 5.0-5.5MeV of SK-I

1000 tonnes D₂O ~

12 m diameter Acrylic Vessel

18 m diameter support structure; 9500 PMTs (~55% photocathode coverage)

- 1700 tonnes inner shielding H_2O
- 5300 tonnes outer shielding H_2O

Urylon liner radon seal

2 km Observatory

Sudbury

Neutrino

depth: 2092 m (~6010 m.w.e.) ~70 muons/day

Neutrino Reactions in SNO

- only detects ν_e flavor
- good measure of neutrino energy spectrum
- Q-value 1.44 MeV
- directionality $\propto (1 \frac{1}{3}\cos\theta)$

NC
$$v_x + d \rightarrow p + n + v_x$$

- measures total $^8B\,\nu$ flux from the Sun
- equal cross section for all active v flavors
- Q-value 2.22 MeV

- lower statistics
- points to the Sun

SNO Pioneers

Herb Chen

VOLUME 55, NUMBER 14

PHYSICAL REVIEW LETTERS

30 SEPTEMBER 1985

Direct Approach to Resolve the Solar-Neutrino Problem

Herbert H. Chen Department of Physics, University of California, Irvine, California 92717 (Received 27 June 1985)

A direct approach to resolve the solar-neutrino problem would be to observe neutrinos by use of both neutral-current and charged-current reactions. Then, the total neutrino flux and the electron-neutrino flux would be separately determined to provide independent tests of the neutrino-oscillation hypothesis and the standard solar model. A large heavy-water Cherenkov detector, sensitive to neutrinos from ⁸B decay via the neutral-current reaction $\nu + d \rightarrow \nu + p + n$ and the charged-current reaction $\nu_e + d \rightarrow e^- + p + p$, is suggested for this purpose.

PACS numbers: 96.60.Kx, 14.60.Gh

Pinch-Off Tube
³ He-CF4 Gas Fill
Anode Wire $9-11 \text{ m}$
Fused Silica Insulator
and Delay Line Termination
Vectran Braid
Acrylic ROV Ball

A Neutrino Event

Event Information: PMT hits – position, time, charge

Event Reconstruction: vertex, direction, energy, isotropy

Fitting CC, NC, ES in SNO

SNO Pure D₂O Results (2002)

SNO Water Assays

Water Purification and Assay

MnOx

- ²²⁴Ra, ²²⁶Ra extraction
- decay products counted in electrostatic counters

Purification Assay of ²²⁴Ra, ²²⁶Ra

HTiO

Th, Ra, & Pb extraction chemically stripped and counted with β - α counter

Purification Assay of ²²⁴Ra, ²²⁶Ra, ²²⁸Th

Vacuum & Membrane radon removal **De-Gassing** Lucas cells

Reverse Osmosis

conc. collection liquid scintillator Purification Assay of ²²²Rn

Purification Assay

Ion Exchange & Ultra-Filtration

Purification

Measuring U/Th Content

Ex-situ

- Ion exchange (²²⁴Ra, ²²⁶Ra)
- Membrane degassing (²²²Rn) count daughter product decays

In-situ

- Low energy data analysis
- Separate ²⁰⁸TI & ²¹⁴Bi

E_{threshold} > 5 MeV

Constrained Shape Fluxes *E_{nc} >2.2 MeV

$$\begin{split} \Phi_{\rm cc}(v_{\rm e}) &= 1.76 \begin{array}{c} ^{+0.06}_{-0.05}({\rm stat.}) \begin{array}{c} ^{+0.09}_{-0.09}({\rm syst.}) \times 10^{6}\,{\rm cm^{-2}s^{-1}} \\ \\ \Phi_{\rm es}(v_{\rm x}) &= 2.39 \begin{array}{c} ^{+0.24}_{-0.23}({\rm stat.}) \begin{array}{c} ^{+0.12}_{-0.12}({\rm syst.}) \times 10^{6}\,{\rm cm^{-2}s^{-1}} \\ \\ \Phi_{\rm nc}(v_{\rm x}) &= 5.09 \begin{array}{c} ^{+0.44}_{-0.43}({\rm stat.}) \begin{array}{c} ^{+0.46}_{-0.43}({\rm syst.}) \times 10^{6}\,{\rm cm^{-2}s^{-1}} \end{array} \end{split}$$

$$\Phi_{e} = 1.76 {}^{+0.05}_{-0.05} (stat.) {}^{+0.09}_{-0.09} (syst.) \times 10^{6} \, cm^{-2} s^{-1}$$

$$\Phi_{\mu\tau} = 3.41 {}^{+0.45}_{-0.45} (stat.) {}^{+0.48}_{-0.45} (syst.) \times 10^{6} \, cm^{-2} s^{-1}$$

more than just v_e coming from the Sun!

391-Day Salt Phase Flux Results (2005)

$$\frac{\phi_{CC}}{\phi_{NC}} = 0.340 \pm 0.023 \,_{-0.031}^{+0.029}$$

$$\Phi_{\rm CC}(v_{\rm e}) = 1.68 \stackrel{+0.06}{_{-0.06}}({\rm stat.}) \stackrel{+0.08}{_{-0.09}}({\rm syst.}) \times 10^{6} \,{\rm cm^{-2} \, s^{-1}}$$

$$\Phi_{\rm NC}(v_{\rm x}) = 4.94 \stackrel{+0.21}{_{-0.21}}({\rm stat.}) \stackrel{+0.38}{_{-0.34}}({\rm syst.}) \times 10^{6} \,{\rm cm^{-2} \, s^{-1}}$$

BS05(OP) Standard Solar Model Flux Calculation: (5.69 \pm 0.91) \times 10⁶ cm⁻² s⁻¹

2002: Solar Neutrino Problem Solved by Direct Observation of Solar Neutrinos Changing Flavor \rightarrow produced as electron neutrinos but only 0.34 surviving as v_e

...the NC measurement is also confirmation that solar models are correct and that energy generation in stars is understood!

Solar Neutrino Flavour Content

Summary of Main SNO Solar v Results

- direct measure of the averaged survival probability of ⁸B solar v
- total active flux of ⁸B solar v agrees with solar model calculations Phase II

Phase III

$$\frac{\Phi_{CC}}{\Phi_{NC}} = 0.340 \pm 0.023 (\text{stat.})_{-0.031}^{+0.029} \text{ Phase II} \\ \frac{\Phi_{CC}}{\Phi_{NC}} = 0.301 \pm 0.033 \text{ Phase III}$$

$$\phi_{NC} = (4.94 \pm 0.21(\text{stat.})_{-0.34}^{+0.38}) \times 10^{6} \text{ cm}^{-2} \text{s}^{-1}$$

$$\phi_{NC} = (5.54_{-0.31}^{+0.33}(\text{stat.})_{-0.34}^{+0.36}) \times 10^{6} \text{ cm}^{-2} \text{s}^{-1}$$

BS05(OP) (5.69 ± 0.91) × 10⁶ cm⁻² s⁻¹

global fit of oscillation parameters including KamLAND and all solar neutrino data

$$\Delta m^2 = 7.59^{+0.19}_{-0.21} \times 10^{-5} \,\text{eV}^2$$
$$\sin^2 \theta = 0.32 \pm 0.02$$

 $\Box v_e$ day-night asymmetry

$$\frac{N-D}{(N+D)/2} = 0.037 \pm 0.040$$
 combined Phase I+I expected value is ~0.03

SNO Spectrum

SNO and Chlorine Revisited

Chlorine rat	te [SNU]:	SNO measures v_e flux:
⁸ B	5.76 🔨	$\Phi(^{8}B) = 0.33 \text{ SSM}$
⁷ Be	1.15	better predictor of ⁸ B in CI
рер	0.22	1.92 ± 0.17 SNU
CNO	0.42	
hep	0.04	CI experimental rate:
total	7.82	2.56 ± 0.23 SNU
		there is room for ⁷ Be!

Liquid Scintillator Solar v Detection

- □ Borexino was originally a boron-loaded liquid scintillator
 □ was to look for CC and NC neutrino reactions on ¹¹B
- $\hfill\square$ then, the interest turned to the "missing" ⁷Be solar neutrinos
 - SMA (small mixing angle) MSW solution had this energy as maximum suppression (lowest survival probability)
- radiopurity requirements of a boron-loaded scintillator were also as stringent as requirements to see ⁷Be solar neutrinos using neutrino-electron elastic scattering...
 - thus a switch to ⁷Be focus eliminated the need for dealing with boron
- scintillation light is isotropic no correlation with Sun direction (also kinematics at lower energy makes this less feasible)
- \square recoil-edge feature is thus very important for ⁷Be v detection

Solar Neutrino Survival Probability

⁷Be Solar Neutrino Detection

neutrino-electron scattering

Borexino at Gran Sasso

- 300 tons of pseudocumene-based scintillator
- 100 ton fiducial volume
- ⁷Be solar v
 v-e scattering
 2212 8" PMTs
 light yield
 ~500 p.e./MeV
 detector filled
 May 15, 2007

Borexino ⁷Be Solar v Measurement

PRL 101, 091302 (2008)

rate of ⁷Be solar neutrinos: $49 \pm 3 \pm 4$ counts/(day 100 tons) SSM predicted no-osc rate: 74 counts/(day 100 tons)

SSM (high metallicity) predicted rate including MSW-LMA oscillations: 48 ± 4 counts/(day·100 tons)

Additional Borexino Analysis Details

- □ light yield is free parameter in the fits: 500 ± 12 pe/MeV
- position resolution: 16 cm @ 500 keV
- systematics estimated prior to calibration of detector response
 - deployment of some calibration sources has now taken place
 - calibration data currently being analyzed

lator mass	0.2
ss ratio	6.0
	0.1
ponse function	6.0
of cuts	0.3
natic error	8.5

E II. Estimated systematic uncertainties [%].

hep Solar Neutrinos

flux is ~750 times smaller than the ⁸B solar neutrinos
 no detection from Super-K or SNO yet

SNO Solar hep Limit (from Phase I data)

- 2 events observed
 number events expected
 background: 3.13 ± 0.60
 SSM signal: 0.99 ± 0.09
 modified Feldman-Cousins 90% CL limit <2.9 times SSM or < 2.3×10⁴ cm⁻²s⁻¹
 - hep flux limit includes oscillations

SK-I hep Solar Neutrino Analysis

