

Solar Neutrinos: Status and Prospects

Mark Chen Queen's University

IV Pontecorvo Neutrino Physics School

These Lectures

- a quasi-historical journey, with flash forward to the present day, looking back at solar neutrino experiments to establish the present day status
 radiochemical, water Čerenkov, liquid scintillator
- □ a look at future prospects
 - new experiments being built and what new physics they will explore
 - brief look at some experiments being proposed
- Note: I have borrowed figures and material from many experiments and many people. Thanks to all of them!

Current, Recent Results

□ to discuss future prospects, I will start with an examination of current, recent results and activities

KamLAND

- 1000 tons (80% dodecane, 20% pseudocumene)
- 1880 PMTs (17" and 20")
 - 34% photocathode coverage
- singles spectrum shows ²¹⁰Pb and ⁸⁵Kr and also ⁴⁰K contamination

must purify liquid scintillator to achieve solar v sensitivity

goal: 10⁵ to 10⁶ reduction

KamLAND Purification Status

1st purification campaign: 2007-05-12 to 2007-08-01 purified 1500 m³, some reduction seen

		²¹⁰ Bi	⁸⁵ Kr	³⁹ Ar	²¹⁰ Po	⁴⁰ K
	Before	42 ⁺⁸ -6	508 ⁺¹⁹ -34	18 ⁺³⁸ -18	43 ⁺¹ -2	$44\pm4\mu$ Bq/m ³
	After (top) (low)	0.2±0.1 10±1	14 ⁺¹ -4 185 ⁺¹ -2	0 ⁺⁵ -0 0 ⁺² -0	<mark>9±1</mark> 14±1	- 13±1µBq/m³
	Reduction (top) (low)	(4.8±2.6)×10 ⁻³ 0.24±0.05	(2.8±0.8)×10 ⁻² 0.36±0.02	-	0.21±0.03 0.33±0.03	0.29±0.03

2nd purification campaign: 2008-06-16 to 2009-02-06
 three full volumes purified, 10⁴ to 10⁵ reduction seen

New SNO Results

- □ lower energy threshold analysis (LETA)
- combined Phase I+II joint fit
 - signal extraction in each phase helps constrain the other
 - improvement is better than just simple statistical combination
- improved simulations and analysis (e.g. energy resolution is slightly better helping suppress steep background tails)
- reduced systematic uncertainties
- □ different signal extraction techniques
- improved oscillation analysis

From 5 \rightarrow 3.5 MeV Analysis Threshold

CC statistics

Extracted Spectrum (Signals and Background) $\chi^2 = 13.6 / 16$ Fit Result

New SNO Low Energy Threshold Analysis ⁸B Solar Neutrino Flux Measurements

Spectrum from CC Events CC Recoil-Electron Spectrum

New SNO Paper has a 3-Neutrino Oscillation Analysis

New SNO Paper has a 3-Neutrino Oscillation Analysis

Solar + KamLAND 3-Neutrino Overlay

Solar + KamLAND 3-Neutrino Overlay

SNO+

- \$300M of heavy water removed and returned to Atomic Energy of Canada Limited (every last drop)
- SNO detector to be filled with liquid scintillator
 - 50-100 times more light than Čerenkov
- linear alkylbenzene (LAB)
 - compatible with acrylic, undiluted
 - high light yield, long attenuation length
 - safe: high flash point, low toxicity
 - cheaper than other scintillators

Einear Alkylbenzene

physics goals: pep and CNO solar neutrinos, geo neutrinos, reactor neutrino oscillations, supernova neutrinos, <u>double beta</u> <u>decay with Nd</u>

SNO+ Physics Program

search for neutrinoless double beta decay
 neutrino physics

 solar neutrinos
 geo antineutrinos
 reactor antineutrinos
 supernova neutrinos

SNO+ Physics Goals

Solar Neutrinos: What's Known Putting It All Together

- ⁸B solar v well studied
 - by Super-K and SNO
- there are good data on *pp* solar v's from the Ga experiments
 - must determine contribution of ⁸B and ⁷Be, subtract, and you get *pp* from the Ga experiments
- Borexino has measured the ⁷Be flux

pep and *CNO* solar neutrinos are the next targets and SNO+ aims to detect these

Neutrino-Matter Interaction

- exploring the vacuum-matter transition is sensitive to new physics
- new neutrino-matter couplings (either FCNC or lepton universality violating) can be parameterized by a new "MSW" term ϵ
- where is the relative effect of new physics the largest?
 - at resonance!
- for $\Delta m^2 = 8 \times 10^{-5} \text{ eV}^2$, $\theta = 34^\circ$ N_e at the centre of the Sun \rightarrow F is 1-2 MeV *pep* solar neutrinos \rightarrow good place to look for new physics

P_{ee} curve with non-standard interactions

from Friedland, Lunardini, Peña-Garay, hep-ph/0402266

Hamiltonian for neutrino propagation in the Sun

Survival Probability for Solar Neutrinos: All Experimental Data Distilled

Borexino Has Detected ⁸B Solar Neutrinos

Iowest energy bin seems low also!

arXiv:0808.2868v2

Figure 7: Comparison of the final spectrum after data selection and background subtraction (red dots) to Monte Carlo simulations (blue) of oscillated ⁸B ν interactions, with amplitude from the Standard Solar Model BPS09(GS98)

SNO+ Lower Energy ⁸B Solar Neutrinos

Helioseismology and Solar Metallicity A New Problem with Solar Models

- Asplund, Grevesse and Sauval determined new solar chemical abundances (metallicity) in 2005 using improved 3D hydrodynamical modeling (tested with many surface spectroscopic observations)
- with these new chemical abundances in solar models (lower metallicity), the previous excellent agreement between model calculations and helioseismology is broken

new C, N, O, Ne abundances lower by 30-50%

Other Broken Solar Model Predictions

⊗ solar model prediction with new composition

© solar model with old composition: 0.715 and 0.244

Key Assumption of the Solar Model

- evolution from zero age along the main sequence constrained by: initial mass, present luminosity, radius, initial composition with
- initial core metallicity fixed to today's surface abundance (i.e. no change from proto-Sun to now, over 4.6 Gyr)
- solar model assumes the Sun is homogeneously mixed, no substantial mass loss or accretion
- □ but maybe solar core metallicity is different than at the surface?
 - mechanisms have been suggested (e.g. by Haxton, that metal depletion during planet formation and late stage accretion on the solar surface causes surface metallicity to be lower)

use solar neutrinos to look into the solar core (as originally intended!)

Use	Sola	ar Neutring	os to Res	olve	
	Source	BPS08(GS)	BPS08(AGS)	Difference	
	pp	$5.97(1 \pm 0.006)$	$6.04(1 \pm 0.005)$	1.2%	
	pep	$1.41 (1\pm 0.011)$	$1.45(1 \pm 0.010)$	2.8%	
	hep	$7.90(1 \pm 0.15)$	$8.22(1 \pm 0.15)$	4.1%	
	$^{7}\mathrm{Be}$	$5.07(1 \pm 0.06)$	$4.55(1 \pm 0.06)$	10%	changes
	$^{8}\mathrm{B}$	$5.94((1 \pm 0.11)$	$4.72(1 \pm 0.11)$	21%	core T
	13 N	$2.88(1 \pm 0.15)$	$1.89(1 \ \substack{+0.14 \\ -0.13})$	34%	
	$^{15}\mathrm{O}$	$2.15(1 \ _{-0.16}^{+0.17})$	$1.34(1 \ \substack{+0.16 \\ -0.15})$	31%	directly related to
	17 F	$5.82(1 \ _{-0.17}^{+0.19})$	$3.25(1 \ \substack{+0.16 \\ -0.15})$	44%	core C, N, O
	Cl	$8.46^{+0.87}_{-0.88}$	$6.86\substack{+0.69\\-0.70}$		Content
	Ga	$127.9^{+8.1}_{-8.2}$	$120.5^{+6.9}_{-7.1}$		

BPS08 solar model: Peña-Garay and Serenelli, arXiv:0811.2424

Solar Metallicity and ⁸B Flux

⁸B Flux Result

SNO+ CNO and SNO ⁸B

à la Haxton and Serenelli

- use the SNO ⁸B measurement to constrain "environmental variables" in the solar core which also affects CNO v
- measure CNO flux (to ±10%) and compare with solar models to differentiate high-Z / low-Z core metallicity

Measuring the pep and CNO Neutrino Flux

underground cosmogenic background from ¹¹C is eliminated at SNOLAB depths of 6000 mwe

muon flux is ~700 times lower than Kamioka, ~100 times lower than Gran Sasso

¹¹C has a 20 min half-life – challenging to veto or tag this background for ~10,000 muons/day

SNO+ will have ~70 muons/ day

figure from KamLAND: solar neutrinos in KamLAND and cosmogenic carbon backgrounds

Other Backgrounds to pep in SNO+

radiopurity requirements

- ⁴⁰K, ²¹⁰Bi (Rn daughter) are important
- ⁸⁵Kr, ²¹⁰Po (as seen in KamLAND) not a problem since pep signal is at higher energy than ⁷Be
- U, Th not a problem if one can duplicate KamLAND or Borexino levels of scintillator radiopurity
- note: Borexino succeeded to fill with little ²¹⁰Bi contamination by minimizing radon exposure of the scintillator

SNO+ pep and CNO Solar Neutrino Signals

Simulated SNO+ Energy Spectrum

3600 *pep* events/(kton·year), for electron recoils >0.8 MeV <u>±5% total uncertainty</u> after 3 years (including systematic and SSM)

Future Experiments

charged-current reactions	
LENS (In) [R&D-prototype]	рр
MOON (Mo) [small-scale R&D]	рр
neutrino-electron elastic scattering	
CLEAN [building DM prototype]	рр
XMASS [building DM prototype]	рр
SNO+ [under construction]	pep+CNO
KamLAND [purified, analyzing data]	⁷ Be

LENS – Low Energy Neutrino Spectroscopy

40 *pp* events/(year·ton of In) includes event tag efficiency

CC measurement of *pp* flux using an 8% In-loaded scintillator

- suppress ¹¹⁵In β^- background
 - 79×10¹¹ backgrounds/(yr·ton of In)
 - use spatial event topology
 - use coincidence time
 - β⁻ energy <500 keV</p>
 - tagged sum = 613 keV

requires neutrino source calibration of CC cross section

MINI-LENS being built: 128 L of scintillator (<1/1000 of LENS)</p>

Tagged Signal → No Backgrounds

- clean spectroscopy of low energy solar neutrinos
- for 5 yr and 10 ton of In, the pp and ⁷Be neutrinos are clearly measured
- ~2000 pp events

LENS Novel Lattice Readout

Signal E(v) -114 keV τ=4.76µs 115In e/γ 116 keV γ 497 keV 115Sn

Lens NUFlu Chamber—3.5m3.5mx5.5m (including side buffer--~10 ton Indium

even newer readout idea under R&D
LENS Yb

- LENS had a brief life as a ytterbium-loaded liquid scintillator but the 50 ns plus 5.3 hr tags proved challenging
- \square ¹⁷⁶Yb is a $\beta\beta$ isotope

¹⁰⁰Mo as a Solar Neutrino Target

$$v_e + {}^{100}\text{Mo} \rightarrow {}^{100}\text{Tc} + e^-$$

 ${}^{100}\text{Tc} \rightarrow {}^{100}\text{Ru} + e^- + \overline{v}_e$

just like ¹⁷⁶Yb, this is another instance of a double beta isotope serving as a solar neutrino target

0.168 MeV threshold for CC ν_e ^{100}Tc beta decay: 15.8 s lifetime

tagged solar neutrino sensitive to pp

MOON – Molybdenum Observatory Of Neutrinos

□ CC measurement of *pp* flux using Mo target foils

- v_e + ¹⁰⁰Mo \rightarrow ¹⁰⁰Tc + e⁻ (threshold 168 keV)
 - ¹⁰⁰Tc β decays with 16 s half-life, Q = 3.0 MeV

has background from $2\nu\beta\beta$ of ¹⁰⁰Mo

Reaction	Rate/yr/ton ¹⁰⁰ Mo
рр	120
⁷ Be	40
рер	2.5
⁸ B	5.1
¹³ N	4.2
¹⁵ O	6.1

9.6% natural isotopic abundance

Fig. Cross section view of MOON-1

MOON-1 prototype 142 g of ¹⁰⁰Mo foil 40 mg/cm²

Elastic Scattering Experiments: CLEAN and XMASS

- v-e scattering in liquid noble scintillator to detect *pp* solar neutrinos
- \Box these are dual purpose detectors: dark matter and solar v
 - XMASS also double beta decay of ¹³⁶Xe
- oscillated event rate: ~1 pp v event/(day·ton) for 50 keV threshold
- main detector concept behind each experiment
 - CLEAN: liquid neon has no radioactive contamination
 - XMASS: liquid xenon has very effective self-shielding

CLEAN – Cryogenic Low Energy Astrophysics with Neon

building Mini-CLEAN a
100 kg prototype dark
matter detector with LNe/
Lar in SNOLAB

XMASS – Xenon MASSive Detector

 100 kg prototype built, operated, studied

 soon turning on 800 kg detector for dark matter

• *pp* solar neutrinos require 10 ton fiducial volume and even larger size for selfshielding

SNO+ is Under Construction

- in my remaining time, I will show photos and describe the status of SNO+ construction
- and I will show photos of SNOLAB (the expanded underground laboratory for new experiments in neutrino physics, dark matter, double beta decay)

Turning SNO into SNO+

- \Box to do this we need to:
 - buy the liquid scintillator
 - install hold down ropes for the acrylic vessel
 - build a liquid scintillator purification system
 - make a few small repairs
 - minor upgrades to the cover gas
 - minor upgrades to the DAQ/electronics
 - change the calibration system and sources

a new experiment with new and diverse science goals, for modest cost

Draining SNO and Boating Inspections

Inside AV Boating

no crazing or deterioration of acrylic seen

boating has taken place inside the acrylic vessel

- to attach survey targets
- inspection for engineering re-certification

many inspections in the outer detector and cavity

Entering the SNO Cavity – Inspections

SNO+ Rope Hold Down Net

SNO+ ropes will be Tensylon: low U, Th, K ultra-high molecular weight polyethylene

Buckling and Finite Element Analysis

AIR HANDLING FLOWSHEET

(see drawing # SLDO-SNP-FL-2001-01)

Status of SNO+ Construction

- □ SNO+ is fully funded and proceeding with construction
- □ major construction work in the cavity is beginning
- scintillator purification system ordered, designed and being built; installation in Fall 2011
- □ SNO+ has broken ground in the utility room...
 - the scintillator purification system requires the enlarging of the old "D2O pit"
- □ some "dead" SNO PMTs are being removed, repaired, and replaced
 - it's not planned to repair all dead SNO PMTs; rather, while we have time, those easiest to access, we have found are easy to repair

Genie Lift in the Cavity

 for accessing PMTs and modifications of the PMT support structure

Scintillator Purification and Process Systems

designed by KMPS (who designed/built Borexino scintillator purification)
purification system pit excavation underway

SNOLAB Slide Show

SNOLAB

SNOLAB Surface Building

SNOLAB Excavation

