## **Reactor Neutrinos II**

#### Karsten M. Heeger

University of Wisconsin

2012 Pontecorvo Neutrino School Alushta, Ukraine

# From the first observation of reactor antineutrinos to oscillation





## **Neutrino Energies**

Big-Bang neutrinos ~ 0.0004 eV

Neutrinos from the Sun < 20 MeV depending of their origin.

Atmospheric neutrinos ~ GeV





Antineutrinos from nuclear reactors < 10.0 MeV

Neutrinos from accelerators up to GeV (10<sup>9</sup> eV)



## **Reactor Antineutrinos**

#### Source

#### $\overline{v}_{e}$ from $\beta$ -decays

of n-rich fission products

#### pure $\overline{v}_e$ source



Karsten Heeger, Univ. of Wisconsin

#### Detection

inverse  $\beta$ -decay  $\overline{v}_e + p \rightarrow e^+ + n$ 

observable **rate** and energy **spectrum** 

only disappearance experiments possible





## Goesgen Experiment (1986)

#### Comparison of Predicted Spectra to Observations

two curves are from fits to data and from predictions based on Schreckenbach et al.

3 baselines with one detector

#### flux and energy spectrum agree to $\sim 1-2\%$

reactors are a "well-calibrated" source of  $\overline{v}_e$ 



## Chooz

#### Best Oscillation Limit at ~1km



Distance: 1km



 $\overline{v}_e + p \rightarrow e^+ + n$ 

~3000 events in 335 days 2.7% uncertainty

absolute measurement with 1 detector scintillator problems



Karsten Heeger, Univ. of Wisconsin

Pontecorvo School, September 9, 2012

## KamLAND





Karsten Heeger, Univ. of Wisconsin

Pontecorvo School, September 9, 2012

## KamLAND



#### Oscillation effect in rate and Spectrum



- deficit in count rate
- spectral distortion

## KamLAND



#### Terrestrial antineutrino signal

# Oscillation effect in rate and Spectrum



55 years of liquid scintillator detectors A story of varying baselines...

?

2008 - Precision measurement of  $\Delta m_{12}^2$ . Evidence for oscillation

2003 - First observation of reactor antineutrino disappearance

1995 - Nobel Prize to Fred Reines at UC Irvine

**1980s & 1990s** - Reactor neutrino flux measurements in U.S. and Europe

**1956** - First observation of (anti)neutrinos







#### Past Reactor Experiments Hanford Savannah River ILL, France Bugey, France Rovno, Russia Goesgen, Switzerland Krasnoyark, Russia Palo Verde Chooz, France

55 years of liquid scintillator detectors A story of varying baselines...

**2011/2012** - The year of  $\theta_{13}$ 

Daya Bay Double Chooz

Reno

2008 - Precision measurement of  $\Delta m_{12}^2$ . Evidence for oscillation

2003 - First observation of reactor antineutrino disappearance

1995 - Nobel Prize to Fred Reines at UC Irvine

**1980s & 1990s** - Reactor neutrino flux measurements in U.S. and Europe

**1956** - First observation of (anti)neutrinos







Past Reactor Experiments Hanford Savannah River ILL, France Bugey, France Rovno, Russia Goesgen, Switzerland Krasnoyark, Russia Palo Verde Chooz, France

## Outline

#### Lecture 2

- precision oscillation physics: theta13 and beyond
- the reactor anomaly
- future reactor experiments
  - θ<sub>12</sub>
  - mass hierarchy
  - sterile neutrino searches
- experiments with antineutrino sources
- searches for new physics
  - magnetic moments
  - coherent scattering
  - NSI
- applications of reactor antineutrinos

# θ13



## Completing the 3-v Oscillation Picture



### **Reactor and Accelerator Experiments**

reactor ( $\overline{v_e}$  disappearance)

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$



- disappearance experiment  $\overline{v}_e \rightarrow \overline{v}_e$
- look for rate deviations from 1/r<sup>2</sup> and spectral distortions
- observation of oscillation signature with 2 or multiple detectors
- baseline O(1 km), no matter effects



- appearance experiment  $v_{\mu} \rightarrow v_{e}$
- measurement of  $\nu_{\mu} \rightarrow \nu_{e}$  and  $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$  yields  $\theta_{13}, \delta_{CP}$
- baseline O(100 -1000 km), matter effects present

## **Reactor and Accelerator Experiments**

#### reactor ( $\overline{v}_e$ disappearance)

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

- Clean measurement of  $\theta_{\rm 13}$ 

accelerator ( $v_e$  appearance)

- No matter effects

mass hierarchy

**CP** violation

#### matter

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &= 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31} \\ &+ 8c_{13}^{2}s_{13}s_{23}c_{23}s_{12}c_{12}\sin\Delta_{31}\left[\cos\Delta_{32}\cos\delta\right] \sin\Delta_{32}\sin\Delta_{32}\sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}s_{12}^{2}\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ &+ 4c_{13}^{2}s_{12}^{2}\left[c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{22}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta\right]\sin^{2}\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}\left(1 - 2s_{13}^{2}\right)\frac{aL}{4E_{\nu}}\sin\Delta_{31}\left[\cos\Delta_{32} - \frac{\sin\Delta_{31}}{\Delta_{31}}\right] \,. \end{split}$$

-  $\text{sin}^22\theta_{13}$  is missing key parameter for any measurement of  $~\delta_{\text{CP}}$ 

## **Reactor and Accelerator Experiments**

#### reactor antineutrinos

measurement of  $\theta_{13}$ 

reactor spectra, fuel evolution and monitoring mass hierarchy? sterile neutrinos?  $\theta_{12}$ ?



accelerator neutrinos oscillation parameters mass hierarchy, CPV



#### Determining oscillation parameters in combined analysis



## Recent Indications for $\theta_{13}$



 $2\sigma$ 

69%, 95% CL (2 dof

curves: T2K+MINOS shaded: T2K+MINOS+DC

0.3

 $\sin^2 2\theta_{13}$ 

0.4

0.5

0.2

## **Oscillation Experiments with Reactors**



Measure (non)-1/r<sup>2</sup> behavior of  $\overline{v_e}$  interaction rate

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$
$$L/E \rightarrow \Delta m^2$$

amplitude of oscillation  $\rightarrow \theta$ 

for 3 active v, two different oscillation length scales:  $\Delta m_{12}^2 \Delta m_{23}^2$ 





## **Oscillation Experiments with Reactors**



Measure (non)-1/r<sup>2</sup> behavior of  $\overline{v_e}$  interaction rate

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$
$$\frac{1}{E} \rightarrow \Delta m^2$$

1.1

-1

amplitude of oscillation  $\rightarrow \theta$ 

 $\Delta m^{2}_{atm}$ 

for 3 active v, two different oscillation length scales:  $\Delta m_{12}^2 \Delta m_{23}^2$ 



Pontecorvo School, September 9, 2012

∆m<sup>2</sup>sol

## Measuring $\theta_{13}$ with Reactor Experiments



## Precision Physics with Reactor $\overline{\nu}_e$

#### How to improve on previous reactor experiments?

- 1. Eliminate dependence on absolute reactor flux prediction.
  - → relative measurement
- 2. Optimize baseline for oscillation.
  - $\rightarrow$  use knowledge of  $\Delta m^2$
- 3. Eliminate position reconstruction and fiducial volume
  - → use total target
- 4. Stable scintillator
- 5. Reduce backgrounds.

#### 6. Multiple functionally identical detectors.

- $\rightarrow$  only relative acceptance of detectors is needed
- $\rightarrow$  cross-checks of systematics

## **Relative Measurement: A 2-Detector Experiment**

#### Krasnoyarsk, Russia first proposed at Neutrino2000



Krasnoyarsk

- underground reactor
- detector locations determined by infrastructure

**Reactor** 

ex/0211(

#### Reactor $\theta_{13}$ Experiments







## Measuring $\theta_{13}$ with Reactor Experiments



Absolute Reactor Flux Largest uncertainty in previous measurements

Relative Measurement Removes absolute uncertainties!

First proposed by L. A. Mikaelyan and V.V. Sinev, Phys. Atomic Nucl. 63 1002 (2000)



## Baseline Optimization: What is best baseline?

#### Rate Effect

deficit in counting rate



for rate effect, competition between 1/R<sup>2</sup> (statistics) and sinusoidal oscillation

#### Spectral Distortions energy dependent signature



## for shape, distortion different at different baselines

#### balance statistical and systematic errors

Karsten Heeger, Univ. of Wisconsin

## Upgrade from 2-zone to 3-zone Detector

#### KamLAND

2-zone



#### Daya Bay (RENO, Double Chooz) 3-zone



3-zone detector eliminates FV cut → we simply count # of protons in target



fiducial volume established based on position reconstruction of events



Karsten Heeger, Univ. of Wisconsin

## Improved Target: Gd-Loaded Scintillator



Karsten Heeger, Univ. of Wisconsin

Pontecorvo School, September 9, 2

## Daya Bay Nuclear Power Plant





#### A Powerful Neutrino Source

- Among the top 5 most powerful reactor complexes in the world, producing 17.4 GW<sub>th</sub> (6 x 2.95 GW<sub>th</sub>)
- All 6 reactors are in commercial operation
- Adjacent to mountains; convenient to construct tunnels and underground labs with sufficient overburden to suppress cosmic rays



#### Reactors produce ~2×10<sup>20</sup> antineutrinos/sec/GW









Hall 3: began 3 AD operation on Dec. 24, 2011





Hall 2: began 1 AD operation on Nov. 5, 2011



**D1 D2** 

> Hall 1: began 2 AD operation on Sep. 23, 2011

## **Daya Bay Detectors**





Karsten Heeger, Univ. of Wisconsin

Pontecorvo School, September 9, 2012

## Antineutrino Detector Assembly









Karsten Heeger, Univ. of Wisconsin

Pontecorvo School, September 9, 2012

detector assembly in pairs 6 ADs operational, AD7,8 in assembly

## **Detector Filling and Target Mass Measurement**





| detector in scintillator hall |                                                       |
|-------------------------------|-------------------------------------------------------|
|                               |                                                       |
|                               |                                                       |
|                               |                                                       |
|                               |                                                       |
| meters                        | ZIPU 1325016<br>ZIPU 1325016<br>Ms w <sup>2</sup> 276 |

| Quantity                    | Relative | Absolute |
|-----------------------------|----------|----------|
| protons/kg                  | neg.     | 0.47%    |
| Density (kg/L)              | neg.     | neg.     |
| Total mass                  | 0.015%   | 0.015%   |
| Overflow tank geometry      | 0.0066%  | 0.0066%  |
| Overflow sensor calibration | 0.0043%  | 0.0043%  |
| Bellows Capacity            | 0.0025%  | 0.0025%  |
| Target mass                 | 0.017%   | 0.017%   |
| Target protons              | 0.017%   | 0.47%    |

Target mass determination error ± 3kg out of 20,000

<0.03% during data taking period

LS Gd-LS MO





Detectors are filled from same reservoirs *"in-pairs"* within < 2 weeks.

Karsten Heeger, Univ. of Wisconsin

#### Antineutrino Detector Installation - Near Hall




### Antineutrino Candidates (Inverse Beta Decay)

Prompt + Delayed Selection 
$$\overline{v_a} + p \rightarrow e^+ + n > 2^{\alpha}$$

- Reject Flashers
- Prompt Positron: 0.7  $MeV < E_p < 12 MeV$
- Delayed Neutron: 6.0 MeV  $< E_d < 12 \text{ MeV}$
- Capture time: 1  $\mu$ s <  $\Delta$ t < 200  $\mu$ s
- Muon Veto:

Pool Muon: Reject 0.6ms AD Muon (>20 MeV): Reject 1ms AD Shower Muon (>2.5GeV): Reject 1s

- Multiplicity:

No other signal > 0.7 MeV in -200  $\mu s$  to 200  $\mu s$  of IBD.





Karsten Heeger, Univ. of Wisconsin

Pontecorvo School, September 9, 2012

### **Background Summary**



#### **Near Halls** Far Hall **B/S % σ**<sub>B/S</sub> % **B/S % σ**<sub>B/S</sub> % 0.02 **Accidentals** 1.5 0.05 4.0 fast neutrons 0.12 0.05 0.07 0.03 0.4 0.2 0.3 0.2 <sup>8</sup>He/<sup>9</sup>Li <sup>241</sup>Am-<sup>13</sup>C 0.3 0.03 0.03 0.3 $^{13}C(\alpha, n)^{16}O$ 0.01 0.006 0.05 0.03

#### Total backgrounds: 5%(2%) in far(near) halls.





Backgrounds uncertainties are 0.3%(0.2%) in far(near) halls. Correlated β-n decay



### Daya Bay Data Set Summary



#### ~200k near ~30k far detector antineutrino interactions







|                                         | AD1             | AD2             | AD3             | AD4             | AD5             | AD6             |
|-----------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Antineutrino candidates                 | 69121           | 69714           | 66473           | 9788            | 9669            | 3452            |
| DAQ live time (day)                     | 127.5470        |                 | 127.3763        | 126.2646        |                 |                 |
| Efficiency                              | 0.8015          | 0.7986          | 0.8364          | 0.9555          | 0.9552          | 0.9547          |
| Accidentals (/day)                      | 9.73±0.10       | 9.61±0.10       | 7.55±0.08       | 3.05±0.04       | 3.04±0.04       | 2.93±0.03       |
| Fast neutron (/day)                     | 0.77±0.24       | 0.77±0.24       | 0.58±0.33       | $0.05 \pm 0.02$ | $0.05 \pm 0.02$ | $0.05 \pm 0.02$ |
| <sup>8</sup> He/ <sup>9</sup> Li (/day) | 2.9±1.5         |                 | 2.0±1.1         |                 | 0.22±0.12       |                 |
| Am-C corr. (/day)                       |                 |                 | $0.2{\pm}0.2$   |                 |                 |                 |
| $^{13}C(\alpha, n)^{16}O(/day)$         | $0.08 \pm 0.04$ | $0.07 \pm 0.04$ | $0.05 \pm 0.03$ | $0.04{\pm}0.02$ | $0.04 \pm 0.02$ | $0.04 \pm 0.02$ |
| Antineutrino rate (/day)                | 662.47<br>±3.00 | 670.87<br>±3.00 | 613.53<br>±2.69 | 77.57<br>±0.85  | 76.62<br>±0.85  | 74.97<br>±0.84  |

rates /day/AD

consistent rates for side-by-side detectors uncertainty dominated by statistics

### Side-by-Side Comparison in Near Hall





### Antineutrino Rate vs. Time



#### Detected rate strongly correlated with reactor flux expectations





### **Uncertainty Summary**



| Detector                                                  |                  |                                                         |              | For near/far oscillation, |                                                          |  |
|-----------------------------------------------------------|------------------|---------------------------------------------------------|--------------|---------------------------|----------------------------------------------------------|--|
|                                                           | Efficiency       | Correlated                                              | Uncorrelated |                           | only uncorrelated                                        |  |
| Target Protons                                            |                  | 0.47%                                                   | 0.03%        |                           | uncertainties are used.                                  |  |
| Flasher cut                                               | 99.98%           | 0.01%                                                   | 0.01%        |                           |                                                          |  |
| Delayed energy cut                                        | 90.9%            | 0.6%                                                    | 0.12%        | - I                       | argest systematics are                                   |  |
| Prompt energy cut                                         | 99.88%           | 0.10%                                                   | 0.01%        |                           | maller than far site statistics                          |  |
| Multiplicity cut                                          |                  | 0.02%                                                   | < 0.01%      | >                         |                                                          |  |
| Capture time cut                                          | 98.6%            | 0.12%                                                   | 0.01%        |                           | 170)                                                     |  |
| Gd capture ratio                                          | 83.8%            | 0.8%                                                    | <0.1%        |                           |                                                          |  |
| Spill-in                                                  | 105.0%           | 1.5%                                                    | 0.02%        |                           | uncorrelated detector                                    |  |
| Livetime                                                  | 100.0%           | 0.002%                                                  | <0.01%       |                           | uncertainty                                              |  |
| Combined                                                  | 78.8%            | 1.9%                                                    | 0.2%         |                           |                                                          |  |
| Reactor                                                   |                  |                                                         |              |                           | nfluence of uncorrelated reactor                         |  |
| Correlated Unco                                           |                  | Uncorr                                                  | elated       | ę                         | systematics is reduced to by far vs                      |  |
| Energy/fission                                            | 0.2%             | Power                                                   | 0.5%         | n s                       | near measurement.                                        |  |
| $\overline{\nu}_e$ /fission                               | 3%               | Fission fraction                                        | 0.6%         |                           |                                                          |  |
|                                                           |                  | Spent fuel                                              | 0.3%         |                           | uncorrelated reactor                                     |  |
| Combined                                                  | 3%               | Combined                                                | 0.8%         | , <b>–</b> 1              | uncertainty                                              |  |
| Energy/fission<br>$\overline{\nu}_e$ /fission<br>Combined | 0.2%<br>3%<br>3% | Power0.5%Fission fraction0.6%Spent fuel0.3%Combined0.8% |              |                           | near measurement.<br>Uncorrelated reactor<br>Uncertainty |  |

Karsten Heeger, Univ. of Wisconsin

Pontecorvo School, September 9, 2012

### Rate Deficit & Near/Far Ratio





Far vs. near relative measurement. Absolute rate is not constrained.

 $sin^{2}2\theta_{13} =$ 0.089 ± 0.010 (stat) ± 0.005 (syst)

## Most precise measurement of $sin^2 2\theta_{13}$ to date.



 $M_n$  are the measured rates in each detector. Weights  $\alpha_i$ ,  $\beta_i$  are determined from baselines and reactor fluxes.

 $R = 0.944 \pm 0.007 \text{ (stat)} \pm 0.003 \text{ (syst)}$ 

Clear observation of far site deficit.

### Rate Deficit & Near/Far Ratio





Far vs. near relative measurement. Absolute rate is not constrained.

 $sin^{2}2\theta_{13} =$ 0.089 ± 0.010 (stat) ± 0.005 (syst)

## Most precise measurement of $sin^2 2\theta_{13}$ to date.



Spectral distortion consistent with expected oscillation from rate analysis\* (\* Caveat: Spectral systematics not yet fully studied)

### Rate Deficit & Near/Far Ratio





Far vs. near relative measurement. Absolute rate is not constrained.

 $\sin^2 2\theta_{13} =$  $0.089 \pm 0.010$  (stat)  $\pm 0.005$  (syst)

#### Most precise measurement of $sin^2 2\theta_{13}$ to date.



#### Next

- shape analysis for oscillation ( $\theta_{13}$ ,  $\Delta m_{13}^2$ )
- spectral shape vs reactor prediction stay tuned!
- absolute flux normalization

### **Other Reactor Experiments**

#### **Double Chooz**



RENO



PRL, 108 (2012) 191802

Ref: Ishitsuka, Neutrino2012

Pontecorvo School, September 9, 2012

Karsten Heeger, Univ. of Wisconsin

### Global 013 Measurements

#### 2011/2012 -The year of $\theta_{13}$



### **Reactor Oscillation Measurements**



Karsten Heeger, Univ. of Wisconsin

Pontecorvo School, September 9, 2012

## Mass Hierarchy and $\theta_{12}$

### Future (proposed experiments and R&D)

### Determining Mass Hierarchy with Reactor Antineutrinos

Daya Bay II (and RENO 50km)



## Reactor Anomaly and Sterile Neutrino Hypothesis



#### $2011\overline{v}_{e}$ flux predictions

- new reactor antineutrino spectra
- re-analysis of 19 short-baseline reactor results
- neutron lifetime correction, off-equilibrium effects

net 3% upward shift in energy averaged fluxes

## deficit from flux normalization problem or from additional oscillation at L~O(1-10m)?

nuclear physics or new physics?

### **Sterile Neutrino Hypothesis**



### Neutrino Anomalies & Sterile v Hypothesis



Anomalies in 3-v interpretation of global neutrino oscillation data

LSND ( $\overline{v_e}$  appearance) MiniBoone ( $\overline{v_e}$  appearance) Ga anomaly N<sub>eff</sub> in cosmology Short-baseline reactor anomaly ( $\overline{v_e}$  disappearance)

if new oscillation signal, requires  $\Delta m^2 \sim O(1eV^2)$  and  $\sin^2 2\theta > 10^{-3}$ → very short baseline oscillation for reactor v,  $L_{osc} \sim 2-10m$ 

systematics or experimental effects?

→ need to test each experimental effect

"Light sterile neutrinos: A white paper" arXiv:1204.5379

### Reactor Monitoring Experiments for Sterile v Searches



### SCRAAM: Southern California Reactor Antineutrino Anomaly Monitor

N<sub>obs</sub>/N



core  $\varnothing$ : ~3m, fixed baseline: 24m

Adapt existing compact detector design/technology, limited by backgrounds

Limitations: Existing designs require overburden for background reduction – limits range of deployment sites, especially very close (<10m) to compact cores

Karsten Heeger, Univ. of Wisconsin







### Reactor Monitoring Experiments for Sterile v Searches



Karsten Heeger, Univ. of Wisconsin

Pontecorvo School, September 9, 2012

56

#### Some Experimental Issues



Karsten Heeger, Univ. of Wisconsin

Pontecorvo School, September 9, 2012

#### Some Experimental Issues

#### **Reactor Core Size**

## Pathlength Spread at detector from core



#### Some Experimental Issues

**Reactor Core Size** 

Karsten Heeger, Univ. of Wisconsin

## Pathlength Spread at detector from core



Pontecorvo School, September 9, 2012



- passive shielding
- identify and localize (PSD?)



- passive shielding
- identify and localize (PSD?)

### Worldwide Effort Towards Optimized Sterile v Search

#### Stereo at ILL, France



#### POSEIDON at Reactor PIK, Russia



Gd-LS Detector: 2.1x1.3x1.3 m<sup>3</sup> Energy resolution:  $\sigma$  = 7% at 1 MeV Spatial resolution:  $\sigma_x$  = 15 cm at 1 MeV



Energy and spatial resolution to measure oscillation curves for different E<sub>v</sub>

aim to detect oscillatory signature

Karsten Heeger, Univ. of Wisconsin

### Worldwide Effort Towards Optimized Sterile v Search

#### Neutrino4, Russia



#### Hanaro-SBL, Korea



- γ-α coincidence can effectively reject backgrounds
- PSF with <sup>6</sup>Li-loaded scintillator may enable on-surface detector with minimal overburden

### Worldwide Effort Towards Optimized Sterile v Search

#### DANSS, Russia





#### **Ricochet**, USA



signal detection through

movable distance



also used for neutrino magnetic moment searches with Ge detectors



Karsten Heeger, Univ. of Wisconsin

### **Experiments with Antineutrino Sources**

### Sterile v Searches with Very Short Baselines: Sources

Alternative Approach: Place source near or inside detector and search for  $v_e$  or  $\overline{v}_e$  disappearance.

#### Advantages

- baseline can be as short as needed
- detectors can be underground to minimize backgrounds
- potential for oscillometry (i.e. demonstrate oscillation signature vs baseline and energy)
- may be able to re-use existing, well-characterized detectors

#### Challenges

- construct suitable, intense radioactive source
- regulatory and licensing requirements for radioactive source



### Sterile v Searches with Very Short Baselines: Sources

A Variety of Sources and Detectors Are Feasible

Sources based on EC (<sup>65</sup>Zn, <sup>51</sup>Cr, <sup>152</sup>Eu, <sup>37</sup>Ar)

e.g. <sup>51</sup>Cr, mono-energetic,  $v_{e}$ , 750 keV





Sources based on beta-decays

e.g. <sup>144</sup>Ce-<sup>144</sup>Pr, ve, <u>continuous spectrum</u>



arxiv:1107.2335 Cribier et al

#### **Detection Channels & Proposed Experiments**

Elastic Scattering: Borexino, SNO+Cr Charged Current: LENS-Sterile, Baksan, Ce-LAND, Borexino, Daya Bay Neutral Current: RICOCHET

see following examples

### Short Baseline Search with Ga Target



<sup>51</sup>Cr Source inside Dual Metallic Ga Target

 $\sin^2 2\theta$ Ref: Cleveland et al.

### Ce-LAND

#### <sup>144</sup>Ce source inside Liquid Scintillator Detector



# map oscillation effect in R and E



Ref: Lasserre
## Daya Bay Sterile Neutrino Search

### <sup>144</sup>Ce source in Daya Bay Far Hall

#### <sup>144</sup>Ce-<sup>144</sup>Pr Antineutrino Source

- $Q_{\beta}$ > 1.8 MeV (IBD threshold)
- lifetime long enough to allow for production and transport
- T<sub>1/2</sub> (<sup>144</sup>Ce)=285 days, T<sub>1/2</sub> (<sup>144</sup>Pr)=17.3 min
- contained in fission fragments of spent nuclear fuel





arXiv:1109.6036 Dwyer, Littlejohn, Vogel, KMH

# Scattering Experiments with Reactor Antineutrinos

## Neutrino Magnetic Moment Searches



## Scattering Studies with TPC

Experiment at Nuclear Reactors (low energy source of  $\overline{v_e}$ )



## Scattering Studies with Germanium Detectors

#### Searches for New Physics with $\overline{v}_e$ Scattering



Requirement: low-background, rare event studies

Goal: Aiming for sub-kev Ge detector for coherent scattering, neutrino magnetic moment, goal sensitivity of 1x 10<sup>-11</sup> μB

Challenges: excess of sub-kev events,

- not fully explained with background model
- moved to Jinping underground lab, China, to reduce backgrounds

#### Gemma-II, Kalinin NPP, Russia





## **Reactor Antineutrinos** and Safeguard Applications

## Monitoring Reactor Fuel with Antineutrinos

#### Pu Production in Reactor



## **Reactor Monitoring**





Targets under consideration

Liquid Scintillator Plastic Scintillator Gd-doped Water







Removal of 250 kg of <sup>239</sup>Pu followed by replacement with 1.5 tons of fresh <sup>235</sup>U fuel

thermal power with neutrinos - 3% precision achievable



Date

Karsten Heeger, Univ. of Wisconsin

Pontecorvo School,

**2011/2012** - The year of  $\theta_{13}$  and reactor neutrinos

Daya Bay Double Chooz

Reno

2008 - Precision measurement of  $\Delta m_{12}^2$ . Evidence for oscillation

2003 - First observation of reactor antineutrino disappearance

**1995** - Nobel Prize to Fred Reines at UC Irvine

**1980s & 1990s** - Reactor neutrino flux measurements in U.S. and Europe

**1956** - First observation of (anti)neutrinos







Past Reactor Experiments Hanford Savannah River ILL, France Bugey, France Rovno, Russia Goesgen, Switzerland Krasnoyark, Russia Palo Verde Chooz, France

55 years of liquid scintillator detectors a story of varying baselines... 81

## Summary

For > 50 years reactor experiments have played an important role in neutrino physics, in both discoveries and precision measurements.

Current reactor experiments (L~1-2km) provide precision data on  $\theta_{13}$ , and reactor antineutrino spectra from power reactors. Data taking for next ~3-5 years.

Intermediate-baseline (L~60km) reactor antineutrino experiments may be used for a precision measurement of  $\theta_{12}$ , and determination of the mass hierarchy.

Very short baseline (L~10m) measurements offer opportunities for precision studies of the **reactor spectra**, **fuel evolution** and searches for **new physics**. On-surface **neutrino monitors** may be developed.

Reactor  $\overline{v_e}$  enable a rich program in probing neutrino properties, detector development, and nuclear monitoring with neutrinos.

There are lots of opportunities! Join the excitement.