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Topic of these Lectures

Models to explain Neutrino Masses and Mixing, considering different
classes of symmetries and contexts...

...with a phenomenological perspective: no too many formal details...

...such that, at the end of the lectures, you will have good bases to
understand papers and talks on this subject...

...and to get the tools to work on this topic, | will provide a series of
exercises (write at luca.merlo@ph.tum.de to get the solutions)
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& The Flavour Puzzle: quarks vs. leptons

& The Flavour Symmetries: which and where?

¥ Flavour Models at the GUT Scale
B Continuous Symmetries: the Froggatt-Nielsen U(1)
B Discrete Symmetries: the Altarelli-Feruglio A4

® Minimal (Lepton) Flavour Violation

B Flavour Models at the Electroweak Scale

B Multi-Higgs Models: The Ma-Rajasekaran A4



The Flavour Puzzle:
quarks vs. leptons



| will use Weil spinors instead of Dirac spinors:
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(mass term: U Wy = ¢{1hy + (¢1¢§)*)

where the two spinors can transform independently under the Lorentz and

V=W, +WVg

SM gauge groups
—> Weil spinors are fundamental objects

The SM spectrum consists of three copies of the following fields:
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The SM Lagrangian

The most general renormalisable Lagrangian invariant under Lorentz and Gsas :
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Going to the mass basis: bi-unitary transformations on the fields
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The CKM Matrix

These transformations affect the CC-Lagrangian:
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Removing all the non-physical degrees of freedom:
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For the charged leptons, the procedure is similar:
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But a mass term for neutrinos is forbidden in the SM:
—>» How to extend the SM to accommodate neutrino masses?

There are two possibilities (without giving up gauge invariance):

1. Modify the particle content
2. Abandon the renormalisability and adopt an effective description



1. Modify the SM spectrum

Mirror the charged fermion sectors: introduce three copies of right-handed
neutrinos, that are singlets under Gsyr ——— ¢ ~ oL L)

Asking for L conservation, the Yukawa Lagrangian gets a new piece:
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Going to the mass basis:

ch M, U, = diag(m,,, m,,, m,.,) {
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U= UGT U, Pontecorvo Maki Nakagawa Sakata

with 3 mixing angles and 1 phase, like the CKM matrix



If neutrinos are so similar to the other fermions, why are so light?
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2. Effective Description

SU(3>C X SU(Z)L X U(l)y
(1) _

Exp SU(B)C X U(l)em
M,

The theory is valid at all the
energies. However, we expect a
cut-off at the Planck scale to
account for the gravitational
Interactions.

E

}??
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} SU(B)C X SU(Z)L X U(l)y

+
effective interactions
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The new operators in the d>4 Lagrangian contribute to amplitudes for physical
processes with terms of the type

£5 X E £6 g E2

A A A A?

When E < A the effects of the d>4 Lagrangian are tiny: indeed, the non-
renormalisable effects are of the order

E ~ 10% GeV

~ 10713

—>|

A~ 10" GeV

f - The theory is not valid at all the energies, but has a cut-off

- New heavy physics could explain the lightness of neutrinos

There is only one d=5 operator invariant under Gsas : Weinberg Op.
55— (%) (A7) (') oy (
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This operator violates L of two units!
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It can arise from several extensions of the SM (see lecture by S.Petcov)
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Assuming M, > v and integrating out the fields v“:
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This reproduces L5 with A <> M, and the light neutrino mass matrix is:
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% = (Y4 (ﬁ%) (ﬁ%) s

A §K(YV)7JJ'V%’VJ’
It provides an explanation for the smallness of the neutrino masses, once the

new physics enters at A ~ 10'° GeV

Sy M,,:Y,,%v

Going to the mass basis:
UVT W —diag(m,,, m,,, M, v =UT v
1 A
LS Ly O §Myi v, V;
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U= U;L U, Pontecorvo Maki Nakagawa Sakata

with 3 mixing angles and 3 phases, differently with respect to the CKM matrix:
indeed the neutrino Majorana mass term prevents to absorb 2 phases



The PMNS Matrix

1 0 0 C13 0 8136_i5 cto Sio 0
0 — 0 C923 5923 : 0 | 1 0 y = O 0 P
0 Er o9 3 =09 —81367’5 0 C13 0 0 1
m
0§912,923,913§§ U= 0= 2

where the matrix P contains the physical Majorana phases:



What we know about Oscillations

Fogli et al. 1205.5254
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http://arxiv.org/abs/1205.5254
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First Approximation Patterns
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Sor a0

B L
v Sin2 912 5+2\/5 E % %
GR 1B BM
TRI-BIMAXIMAL (TB)[Harrison, Perkins & Scott 2002; Xing 2002]
. i . 1
sin? @ys = 5 sin®fy3 =0 sin® 019 = 3 — 01, = 3500
GOLDEN RATIO (GR) [Kajiyama, Raidal & Strumia 2007]
I [

SiIl2 923 = 5 SiIl2 913 = aim (912 — e (912 = 3 s

K
Al ofE
. 2

BIMAXIMAL (BM) [Vissani 1997; Barger et al. 1998]

1 1
sin? Oo3 = 5 sin? 015 =0 sin? 010 = 5 TR 010 — 2%

Maybe related to the

Quark-Lepton Complementarity: /4~ 012 + A
[Smirnov; Raidal; Minakata & Smirnov 2004]

[Altarelli et al. 2009,

Exp BM Adelhart et al. 2010
ﬁ ~ Y ’
912 912 A Meloni 2011]
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Symmetries of the TB Pattern

28 3 0
Urp=| -1/v6 1/v3 —-1/v2
RYNIRYN- YN

The most general neutrino mass matrix that corresponds to the TB pattern is:

X Y Y
RN dias(m,,, My, M, ) Uis = | ¥ 2 r+y—2
R as Sl — 7 Z
This mass matrix has two symmetries:
magic symmetry mu-tau symmetry
§Y = S =i Ajs M5 Ags = M) °
- 2 2 150
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Exercises 1 & 2

Construct the most general mass matrices corresponding to the GR
and BM patterns.

|dentify the unitary matrices that leave such mass matrices invariant. Is
there any common symmetry among the TB, GR and BM patterns?

D



The Flavour Symmetries:
which and where?



Charged Fermions Neutrinos
large hierarchies undetermined spectrum
relatively large masses relatively small masses
small angles (two) large angles

- Specific flavour structures (i.e. TB patter) are the result of the invariance
under flavour symmetries. The strategy is to promote these symmetries
of the mass matrices in symmetries of all the Lagrangian

- Flavour symmetries cannot be exact: the Yukawas do not show any
symmetry at low-energy

- Starting from a Yukawa Lagrangian invariant under a Flavour Symmetry,
masses and mixings arise only through a Symmetry Breaking Mechanism

-  New Beyond SM physics that originates such mechanism is necessary

- One further degree of freedom:

type of flavour symmetry

A



Type of Flavour Symmetries

Local Abelian Continuous
() 0 ()
Global non-Abelian Discrete

There are advantages and disadvantages for any possible choice!

In the following | will concentrate only on global flavour
symmetries: on U(1l) and SU(3) for the class of continuous
symmetries and on A; for the class of discrete symmetries.
These are the most common combinations studied in the

literature.
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Basics of Group Theory

Definition of a group G:
G is a set of elements with a multiplication rule

1. Closure:
an & G, & EF — R pE G

2. Associativity:
(91 92) 93 = g1 (92 g3)
3. Unit element:
Vge G, dI € G suchthat Ig=g

4. Inverse element:

Vg € G, 39_1 € G such that g_lg — 4

i



U(1) is the group of the 1x1 unitary matrices. Only 1-dim irrep.

Geometrically it is the group of the rotations in the complex plane about

the origin: 6 — ¢'?.

Given two fields, g1 ~ 81 and g2 ~ 02, the product of the fields transforms
as 01 + 05 :

——> and invariant under U(1) is such that it transforms as O

g1 4942 - gn —- (91—|—92—|——|—9n20
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SU(3) is the special unitary group of degree 3 and is the group of 3x3 unitary
matrices with determinant 1.

Its generators are represented as traceless hermitian matrices:

#EN,) — 0 >\—>\T
il - () 0 1 O
1l 0 O Ao = Y O 0 ()
0O 0 O 0 0 0 O
OO 0 0 ()R
M 0 0 O el O R
i) <0 1 0 0 1 0
o 0 0 1 1= 050
Ar=10 0 —2 g = —— 1= (| S ()
iss 0 V3 0 0 -2
If 91,92 ~ 3 then §1,Go ~ 3 and
3x3=3+6 6x6=1+8

BEe3 — 1+ 8 SIX8=1+8+... 29




Ay is the group of even permutations of 4 objects isomorphic to

the group of the rotations which leave a regular tetrahedron
invariant (Subgroup of SO(3)).

It has 12 elements and 4 representations: 3,1, 1’, 1”

It has two generators, S and T, that satisfy the relations:
G =T — (S0n)® =
PR lsiue Sae S e, STe. STS, T ST S iR STl

3d rep: 00 i .
=|w 0.0 S = [F0 " S
0O 1 0 0 7 0 =l
1 x 1" =1"
R — 1 = ai1b; + azb2 + aszbs
e 1 = 1’ 1" = a1b1 + w?asbs + wasbs

3x3=14141"23+3 1" =aib +wazbs +wasbs
3 ~ (a2b37 &3[)1, a1b2)

3 ~ (asba, a1bs, azb;) e

€

271

3
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Physics is independent on the chosen basis for the generators!

1 =T = () = 1

3d rep:
&) ) | = 2
TP = | EE S =22
0 0 w " \'2 10 .
L 1, — a1b1 + a2b3 + asbo
5 1” = agbz + a1b2 + az0,
B 1" = aob5 + a1b3 + aszbq

/ - 1 2a1b1 — asbsz — asbo
3 x 3= L= 1 SR Se RIS E R 3 7 2a3b3 — a1ba — asbq

2&2[)2 s a1b3 e Cbgbl

asbs — asbs
Cb1b2 o azbl
CLgbl = &1[)3

DO | —






Flavour Models at the
GUT Scale:

The U(1) Flavour Symmetry

Recent reviews: Mainly based on

Froggatt & Nielsen 1979

Altarelli et al. 2012
Buchmuller et al. 2011

Altarelli, Feruglio & Masina 2002



The Froggatt-Nielsen U(1)

The Froggatt-Nielsen U(1) model is a milestone in this context:

formulated only in the quark sector (1979!!)
the Flavour Symmetry is a global U(1)gn
new scalar field @, called flavon, which develops a VEV

() /A ~ex1
the SM quarks are charged under U(1)gn as FENI(CR =t ]

while the flavon as a negative charge F'N(6) = —1

the corresponding non-renormalisable Lagrangian reads:

0\ [0\  :
o T A (Ya):5 di H'q;+

AN L —

where Y, .4 = O(1) are free parameters

B



9 ndzq 9 nqj :
e — (K) K) (Ya)i; dsHq;+

RN AR ¢ 77
i (K) <K> (YU)U ’LL,I;HTC]J' e h.c.

when the symmetry is spontaneously broken by the VEV of 6, fermions
receive different contributions in terms of €. The Yukawa matrices are
then given by:

Yu — uCYqu Vi) == FdCYqu
ci 0 0
Ff — 0 €' f2 0
0 0 €3 (f — (U dc)

Assuming M f1 > N2 > nf3 > 0 we move to the physical basis:

nQi

Nihainasl N < | ="y

nqj

_) Via = Vg & Vi = O(1) independently of
the particular

Vb = Vig = Vs X Vep charge choice
39



e = &
Tl o) :
correct CKM with: { el ) — 3> V=|e 1 ¢2)]|neelctinzOm
e~ 0292 35 ol parameters)
1 \ )\3%4
V ~ L
)\3%4 )\2 1

correct quark masses with: {

= 00 = 0 (neglecting the
— Wi = i o 0 Mg = 0 = 0 mass and the O(1)
0 0 0 O parameters)
e 0 e (0
e [ 0 ¢ 0 M_E = 0 2l
Ol ol@ | O
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Lepton Sector

0\ [0\ .
i T A (Ye)i; di H'q;+

)" (o T

A A A
correct CKM with: Mo =2 )
correct quark masses with: Nye = (4, 1,00 “ng —SESUR0N

With a similar choice for the charged leptons, it is possible to explain the
mass hierarchy:

ne = (2,0,0) e
{ .y M = ¢ e
Nec — (3, 2, O) 62 1 1
and in the physical basis:
. e 00 € 00
= 2 1 1 M =0 & 0 ME®P — [ 0 el
=4 il 0 0 1 0 Ol



This does not fit with neutrinos and the lepton mixings:

e e
el 1 1 — [, =i|tca ]
| ¢= vl
1L & & (neglecting O(1)

e o 9 neglecting

U = UL 62 1 L parameters)

€

O ~ 45° Gl

6577 ~ (34.0

P ~ (9.0 + 0.5)°

62

1
1

r**P ~ (.03 4

- 0.003

—> Need to change the value of e and/or the charges

38



e e el e e
— M. =] 8 € M, = e e
e e
and in the physical basis:
69 0 0 69 0 0
EE - [0 & 0 M = [0 ey
4 2
S e C e g o2 & . iz, o2 i
Am? [ :
p= ol ~ et 0 0.026 [P & 0.03 £+ 0.003
Arrnatfm L |
S e 1o el
Saaay U U, — e ]l e —p [/ = e & e
e e 1 = - 1

PSP ~ (38.0 +
FEP ~ (34.0 +
TP ~ (9.0 + 0.5)°

o3 ~ 019 ~ 22°
013 ~ 9°

555



The use of the U(1) symmetry has several advantages:

it is minimal: only 1 symmetry factor and only 1 new scalar field

the U(1) is already present in the SM (hypercharge)

the U(1) can be gauged to avoid the presence of the Goldstone
boson due to the spontaneously symmetry breaking: in this case
there will be the appearance of a new gauge boson, the 7', well
studied in phenomenology

the gauge U(1) is usually present in the low-energy theories that
originate from GUT or Strings (constraints on the choice of charges)
realistic models can be constructed respecting the symmetric
principle and all the fermion mass hierarchies and mixings can be
explained

On the other hand, the predictions are affected by O(1) coefficients and
therefore the predictive power is rather weak.

40



Exercises 3 &4

0 Construct the mass matrices in the case of type | See-Saw if the charges
of the fields are the following:
a. ng = (1,0,0) /B3, 20N, - = (2,1,0) € ~ (0.2
b. ny = (2,1,0) /A (5,3, GEE): — (2,1,0) e ~ 04
c. ng = (2,0,0) 00 — (5, 3,0 \GE\— (1, —1,0) ~04
and discuss the values of the charged lepton mass hierarchy, of the
mixing angles and of r. Notice that this charges are compatible with
SU(5) GUT unification.

¥ Identify the charges that give rise to the quark mass hierarchies and the
CKM matrix taking as expanding parameter ¢ = 0.1.

41



Flavour Models at the
GUT Scale:

The A4 Flavour Symmetry

Mainly based on
Altarelli & Feruglio 2005

Recent Reviews:
Altarelli et al. 2004

Mohapatra et al. 2006
Altarelli 2010
Altarelli et al. 2012




General Strategy

Wrt U(1), discrete symmetries have a more complicate structure: usually,
non-trivial subgroups can be identified. It is possible to use this property to
improve the predictive power and describe specific patterns (such as the TB).

Consider the flavour symmetry G ¢, broken into two different subgroups:
- Geinthe charged lepton sector and G, in the neutrino sector
- M. and M, are determined by G. and G, respectively

Gy

:

Ge Gy

. B

M, M,

Imposing that (M;r Me) is invariant under G, and M, under G, then
U. and U,, and therefore U = U;L U, are fully determined by GG, and G,.

Ul (M} M) U, = (M M)

Ao



TB from Symmetry Breaking

It is useful to work in the basis in which (M M.) is diagonal. As a result, the
PMNS matrix comes only from the neutrino sector:

Gy
‘/Ge GV\ - U=UlU,=Urs
(M(}L M.) diagonal it
A symmetry that forces (M;f M.) to be diagonal can be (many possibilities):
I 0 |
o lkwied g — 0 e 2me
00 @ W=

that is called the Ciclic group Z3, under which

S = () = diag s e

(A bottom-up approach also works: given (M M. ) diagonal, whichisa T

that leaves (M M. ) invariant?) .



For the neutrinos, we have already seen that the TB pattern

208 13 0
Urm — || =16 Lk/S  —1//%
_1VE 1V +1/V3

arises from the following most general neutrino mass matrix:

L Y Y
MVTB: Y % T+y—=z

1V i e el e Z

that is invariant under transformations of the magic and mu-tau symmetries:

magic symmetry mu-tau symmetry
ERNEES Ajs M ® Agg = M °

1 ) 2 I = ()

5 = § e o) Aoz = O

2 e | () elan()

Notice that S2 = 1 and A3; = 1. This means that both Gg = {1, S5} and
G a,, = {1, Ass} are parity groups Z>.

A



v

GeEZS GVEZQXZQ
(M] M) diagonal M

and the generators of the groups are 1, S, Ass.

The minimal choice for G ¢ such that the charged leptons are diagonal and
the neutrinos are diagonalized by the TB pattern is As as done by Altarelli
and Feruglio (2005). A4 has only two generators and 12 elements:

G =% = (§I)F = 1

and 4 irreducible representations: (2" basis)

8 T =1
% 2 | : 00 (-1 2
- oe=1L = B 7T=|0 «? 0 s=3212
1 T — w Gae i) vy 2 2 il

the same 7" and S that generate G, and Gg
46



Matter fields Higgs Flavons
¢ e u¢ 7 || hya 0 ©r s £
/" / Change of
As 5 1 L 1 1 1 3 3 ) notation for
Z3 R G W 1 | 1 w w | theHiggs!

Ulpn |0 2 1 0 O -1 0 0 0

Non-renormalisable Lagrangian invariant under SM and Flavour symmetries:

L) o+ gt (E26) hatyor (£20) by

A? A A A
S 29 ps L
Ve a__hu}ML | hu}%L
& Ty e B Ay
1/ s 1
_‘/ S 1//_ 1 A > Flavour cut-off
| Ar > LN cut-off
el — 1’ o™

O > FN mechanism
B 17 |3+ 3 e 47
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B e () et vt (S00) ha et (O
P < WA ps b0
El/—xaAhuhu AL Iajbhuhu A AL

Under appropriate conditions (SUSY, Extra-D...) a natural minimum of the
scalar potential is

@ = (u,0,0) > breaks Asdownto G. = 23

WTS> — Cb(’Uu u, u) > breaks Asdownto Gg = 25

@ — gy i

A g o

<9> Ge = Z3 G, = Z> X Z

T — € / \
(M} M) L

We need to prevent that ©s (¥1) couples to the changed lepton (neutrino)
sector: the additional Z3 avoids the appearance of such terms.
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After the EW and Flavour symmetry breakings:

ye€2 0 0 €= 05
/8 S — 0 yue 0 |uvg explains
0 0 the mass
i hierarchy
2 b b
/a 4 = == — — \
5! 3 3 :
£l/ > MI/ P _é gb T — é U_u
3 3 3| AL
b b ;
Gl )
L Y Y
MVTB — Y 7 T+y—=z
(R Z
a4 =24 Cq 2 complex parameters
b=2x,cpu in the neutrino sector

Notice that M, is also invariant under G 4,,: it does not come from the flavour
symmetry, but it is an accidental symmetry!
o



I The mixing is the TB pattern:
7

UZ. M, Urg = diag(a + b, a, —a + b)~%

Ap
¥ Only normal hierarchical spectrum
Normal
I v V3
r = ATnsol ~ i
e 35
A v. B v
H v

B8 Lower bounds on the lightest neutrino mass, sum of neutrino masses

m1 > 0.014eV Zmz > 0.09eV

¥ Prediction for the Ov2B-decay effective mass:
2

2
2

= la+ Zb
. loto

Mee

= % (9m1 + 5Am80l Amsol)



Sub-Leading Corrections

Sub-leading corrections arise from higher-dimensional operators, suppressed
by additional powers of the cut-off: they affect

M, M, VEV alignment
—/—/
due to the complete breaking of As:
©s (@1 ) couples to the charged lepton
(neutrino) sector and no surviving
subgroup is present at the NLO

B The mixing is perturbed:

1 1
sin® 019 ~ 8 + O(u) sin? fgz ~ 5 + O(u) sin 013 >~ O(u)

& The predictions for ml’zmi and |m..| modified by O(u) terms

B« must be of the order of u ~ 0.08 to accommodate the value of
the reactor angle

S



The use of the A4 symmetry has several advantages:

the predictive power is strong: all the three mixing angles

with an additional U(1), it is possible to explain the charged lepton
mass hierarchy (the U(1) can be substitute by other discrete syms)
the spontaneous breaking of a discrete symmetry does not lead to
the appearance of massless Goldstone bosons

the discrete symmetries could be a leftover of Poincare symmetry in
D>4 dimensions or could arise from string theories

realistic models can be constructed respecting the symmetric
principle

extensions to quark exist and are working [Feruglio et al. 2007]

On the other hand:

the spectrum is enriched of several scalar fields
the cut-off is generically at the GUT scale: no directly testable
misalignment problem: two triplets with two different VEVs. This is

solved only in SUSY or Extra-D models
5



Exercises 5 &6

I Write explicitly the NLO operators for the Altarelli-Feruglio model.
ldentify the corresponding corrections to the mass matrices and to the
mixings (2" basis with generator T diagonal).

B0 Construct the Altarelli-Feruglio

model in the type | See-Saw context: wrt

to the charges presented before,

A S

Ay 313 1
/3 w? | w? w?
Ul)pn | 0 | O 0

Compute the full Lagrangian, t

ne lepton masses and the mixings.
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Minimal (Lepton)
Flavour Violation:
a bottom-up approach

Mainly based on

D’Ambrosio et al. 2002
Cirigliano et al. 2005




The Flavour Problem

The Flavour Puzzle:
can be solved with
flavour symmetries.

%)

v :
1.5|||||I||I||||||||||||||||| \“/ T [\
% ) 0 ( ) x!
excluded area has CL > 0.95 ! Z ‘ ) | ) )(\
1 x 4 vz

i Yy %o - | /.
- ! ¢ n L %10
1.0 — S Amd&AmS - x10 V} \
E E «107"
0.5 :— Amd —:
SIS SR 3 FCNC:
oslh > automatically suppressed in the
: | : SM. But what with new physics?
'1'0:_ €k —:
= AN -
_1.5 _I L1 1 | I | i I I | | I T | | I T | | I I_
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

p
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New Physics

(6) (6)
Lo = Loy + E ),
A
[Isidori, Nir & Perez 2010]
Operator |Bounds on A in TeV (¢;; = 1)|Bounds on ¢;; (A =1 TeV)| Observables
Re Im Re Im

5t | RS L& < T G0l Sl Amy; €x

(5.7
(§R dL)<§LdR) 1.8 x 10% 3T e ME 5.0 52 1 = 261 Gl Amg:; €x

Eiainin)c |12 < 10° 2.9 x 103 5.6 x 10=7" 1.0 < 105 0 Al i sl G
(erur)(crugr)| 6.2 x 10° 1.5 s¢ 10 5.7 > 107" SIS0 8 VA ol o ey

e v | Enll S aliF 9.3 x 102 Gl L0 eIl ANGTE) S
brdr)(brdr)| 1.9 x 103 3.6 x 103 5@ ll=0 o AT sl Amp.: Suk

ar PYKs

bry*sr)? 1Ll 18 s M2 Amp

(bry :
(br sp)(brsg) SRS Gillig 1.8 v 0 Amp.

Generic Flavour Violation sources
at the TeV scale are excluded

—>
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Minimal Flavour Violation

The SM flavour symmetry of the gauge interactions is

Lo ) MTU“DMZ + ieCTa“DMeC + iqTa“Duq + iuCTa“DMuC + idCTa“Dﬂdc
Gr=U(3)g XxU(B)ye X U(3)ge X U(3)g X U(3)ee

r ¢q—U,q g~ (3,1, 1)

U, u~(1,3 1) <

U, °~(1,1,3)

¢

¢ — Upl gN(S,l)

e Toies U;rc ore (L 3]

This flavour symmetry is not respected by the Yukawa interactions:
Ly =Y HY0 + d°V,Hq + uY, H ¢ + h.c.
— eULY U, HY + d°U YU, H g + wU}. Y, U, H'q + h.c.

The formal invariance is recovered if the Yukawa matrices are promoted to
auxiliary fields, called spurions, which transform as:

R -V U Y, ~(331) f E

; T . Y, 5 UV U] e
LYd%Udc Yqu YdN (3, 1, 3) | 57




Fermion masses and the CKM matrix are described by:

\/§ TNy, 0 0

e — . 0 V
v
0 0 Tr¢ 9 Me 0
m i ) e £ i
9 d (V)
0 L T
e 0 0 ™y

where V stands for the CKM matrix.

Assuming that all the dim-6 operators are constructed
by SM fermions and the spurions, any FCNC process is
kept under control, with a NP at a scale of few TeV.

The fermions masses and the CKM are ONLY DESCRIBED
and NOT EXPLAINED, because the background values of
the spurions are simply ASSUMED. It needs an higher
energy theory to explain it. [Alonso et al. 2011]
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Assuming that neutrino masses arise from the Weinberg Operator:

the flavour symmetry is again G ¢ (no new fields)

G ¢ is not respected by the Weinberg Operator

o (FM)T Y, (m) o (FM)T UrY,U, (FM)

N 1N AL
Gris formally restored if
Y, ~ (8, 1) e, = [ 1, )
neutrino masses and the PMNS arise if
A ml O O
Y,=—=U*| 0 my 0 | U
L 0 0 o

where U is the PMNS matrix

Again, the neutrino masses and the PMNS are
ONLY DESCRIBED but NOT EXPLAINED.

oF



Exercise 7

¥ Introducing 3 RH neutrinos the flavour symmetry is enlarged:
- determine the new G ¢ arising from the kinetic terms
- determine the quantities that do not preserve the symmetry
- identify which quantities must be promoted to spurions to formally
restore G ¢ and determine their transformation properties
- is there a unique possibility to describe the neutrino masses and
the PMNS matrix?
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Flavour Models at the
Electroweak Scale

Mainly based on
Ma & Rajasekaran 2001



Scale of Symmetry Breaking

Large Scale Symmetry Breaking

- The FS is broken at a very large
scale E > v by scalar fields that
are singlets under the SM gauge
group but transform non trivially
under the FS:

0~ O R

—/_/
flavons

- The Lagrangian of the model is
usually non-renormalisable: the LO
terms describe the most relevant
contributions to masses and
mixings, while the NLO account for
corrections

EW Scale Symmetry Breaking

- The gauge and the flavour syms
are broken together and by the
same objects: Multi-Higgs scenario

H17 H27 H37 St
SR

doublets of SU(2).
non-trivial rep. of the FS

- The Lagrangian of the model is
usually renormalisable for the
charged fermions and up to dim=5
for the neutrinos (Weinberg Op.)

62



The full symmetry of the modelis A4 x L :

Fermions: c
; e” ~ (1,—1
£~ (3,1) C (1” )1
VCN(S,O) Iu N( ,_)
e (1,
Scalars:
doublets under
Lagrangian:
1
i 35 WA = T, ™ (ﬁT 5)3 +
el — 1" + Yy €° (HTK) = Ul U (HTZ)/ e (HW)N
el — 1
:_// % 1// ik 1/

e -1 +1"4+3+3 63



L D% W = pf2 A (ﬁT 8)3

/!

+ Yy e° (HW) = W (1 (HW)/ + y, 7° (HW)

Once the neutral components of the scalar fields get vevs:
() = (a2 (1°) = u/V2

Charged Leptons: (1"? basis with generator S diagonal)

Ye Ye Ye

v
Mo = |[tn G gper || —
g prw? yrw) V2
that is diagonalized by a LH transformation:
- e () . 1 (1 1 1
M, U, = it — [y ] e e g e W
@ 20 V2 1 e

Charged lepton mass hierarchy is NOT explained!



[, 35 M VCTVC

1

= . & (HW) = W (1 (HTE)/ St (HTK)

Yy v (ﬁT 8)3

/!

Once the neutral components of the scalar fields get vevs:

Neutrinos:

<HO> = (vvvav)/ﬂ

() = U/
= 0 YTu/\2
Y, u/v?2 M,
0 b e (]
0 Yo =& Qg ae)
M (s O
e ()
= g, 31 completely degenerate
2M 1 a1 neutrino masses
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Upmns: - 1 1
| 5
Ug = — o L1 G0 U, generic
] W e

] g | 1

_ o Il 2
—_— U:UBU,/Zg B o U

L w2

Since all the neutrino masses are degenerate, then the neutrino
mixings are unspecified!
Proposed Solution: add arbitrary soft terms (symmetry breaking terms)
that break the degeneracy and fix the mixings. These terms are of the

type: (

In this way it is possible fit the data.
It does NOT follow the symmetry principle!

Where do these terms come from?
Why exactly these terms and not others?
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The Scalar Potential

The key ingredient of the model is the vacuum alignment:

(H°) = (v,v,0)/V2 (n°) = u/V2

Focussing on H:
V[®a] =p2(2]®) 4+ ®Ldy + BLd3) + A (B + BLDy + BID3)2 4
+ A3(DT D1 DI Dy + BB DLDg + DI, DLDs)+
+ A (DT Dy DI Dy + DI D DID, + DI D DLD,)+

A5
+7[ [(qﬁcp) + (D)2 +<I>T +hc
dn‘ferent
Condition for a stable minimum away from the origin: contractions
/JQ =0 \: € Real of 4 triplets

Condition for a potential bounded from below:

A1 >0 A+ A3+ A4+ Ascose >0

6/



Condition for a stationary point (minimum or maximum):
oV | D]

0P,
Condition for a physical minimum (all the physical masses are non-negative):

*V(®] .,
00,00, [ ~

= 0

Figenvalues {

—> ohe of the solutions is indeed:
(H®) = (v,v,v)/V2 v =vEw/V3

A true physical minimum must pass also the following requirements:
- Perturbative Unitarity: additional scalars contribute to the gauge
boson scattering (that is unitarised by the Higgs particle in the SM)
- Zand W* decays into scalar fields: these decays are well measured
-  Consistency with the electroweak precision tests: TSU parameters
- Study the presence of tree-level flavour changing neutral currents

Strong constraints on the parameter space!
68



The model is the simplest of this kind in terms of fields content and of
symmetries, but...

- no explanation of charged lepton mass hierarchies
- no symmetric explanation of neutrino masses and mixing

On the other hand the scalar content is well defined: the VEV is indeed a

physical minimum of the scalar potential and all the phenomenological
bound are respected

(Similar results in the quark sector)

The possibility of explaining masses and mixing using
> a multi-Higgs approach is still viable but new
strategies should be followed.
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Exercises 8 &9

I Determine all the possible minima of the scalar potential:

VD, =p2(D1 Dy + LDy + BLD3) + Ay (DD + BLDy + BLd3)2+
+ A3(DT D DI Dy + DI D1 DLDg + DI D, DLD3)+
F A (DT Dy DI By + DT D3 DLy + DI DD Dy)+

e T
. {e“ (@]@2)7 + (Dfs)? + (@12 + h.c}

(\)

distinguishing among real and complex VEVs.

& Modified the previous scalar potential involving also the field n ~ (1,1)
and determine the conditions for it to get a VEV.
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Conclusions

& There is no THEORY of NEUTRINO MASSES and MIXINGS, only ideas!

B The Froggatt-Nielsen U(1) provides a valid strategy, but the predictive
power is rather weak.

& Discrete Flavour Models at the GUT scale (i.e. AF model) have a strong
predictive power and are able to describe lepton mass hierarchies and
mixings. However, they require a much richer heavy spectrum and a
more complicated symmetry content (auxiliary symmetries as Z,).

B Minimal (Lepton) Flavour Violation is only a working context, where
FCNCs are under control, but it is not a model of flavour: it needs an
higher energy theory to explain it.

B Discrete Flavour Models at the Electroweak scale (i.e. MR model) have
rather simple spectrum and symmetry content, but give up in
describing charged lepton masses, need ad hoc terms for the
neutrinos and are strongly constrained due to too large FCNCs.

7
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Backup



AF: Vacuum Alignment - Extra D
©)

—— = (u,0,0) —— = cp(u, u, u) e

A

is NOT a minimum of the most general renormalisable scalar potential:
mainly due to the mixed quartic term among ¥7 and ¥S

<90T> == (vTa 07 O)
local minimum of Vg

local minimum of V|
0 y L

The extra-D keeps separated ¢¥7 and ¥s, solving the problem of the mixed

guartic terms
ol
Ys ) huhu€ (££)

v masses arise from local operators at y=L:  hyhy ( A A
L

charged lepton masses arise from non-local operators:
(feprF") 0(y) _MFEF U a0l = /L)
VA VA

integrating out the balk fermions ff — (feort) ha o~ ML
A 74




AF: Vacuum Alignment - SUSY

The proposed vacuum alignment is a natural minimum of the scalar potential
in the SUSY context: ~

The complete superpotential is: w = wy + w, + wy
[,e,,/ e we,l/
wa =M (05 1) + 9(0g eror) + 91(05 Pses) + 926(05 s)+
+ g3&0(0s50s) + ga&o€” + gs€ok€ + ge&ol”

The minimum of the scalar potential is at:

(pr) _ (ps) _ &) _ A
iy (u,0,0) . cp(w, u, u) 1 = Cal i 0
W= : c; = L Ca undetermined
2 g 393 ° i 75



[Altarelli, Feruglio, Masina & LM 2012]

Consider a simple U(1) as flavour symmetry, in a SU(5) inspired context:

\Ile T (57370) i (27170)
r tan26’12
: 0.05
0.03 - :
004"
0.02 - 0.03 |
i 0.02 |
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sin 913
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0.025F ] i
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0015} ] i
E 002
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Anarchy vs. Hierarchy?
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[Altarelli, Feruglio, Masina & LM 2012]
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