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The aims and onepts of the �eld-

theoretial approah.

The main purposes:

To de�ne the domain of appliability of the standard

quantum-mehanial (QM) theory of vauum neutrino

osillations and obtain the QFT orretions to it.

The basi onepts:

• The �ν-osillation� phenomenon in QFT is noth-

ing else than a result of interferene of the maro-

sopi Feynman diagrams perturbatively desribing

the lepton number violating proesses with the mas-

sive neutrino �elds as internal lines (propagators).

• The external lines of the marodiagrams are wave

pakets rather than plane waves (therefore the stan-

dard S matrix approah should be revised).

• The external wave paket states are the ovari-

ant superpositions of the standard one-partile Fok

states, satisfying a orrespondene priniple.
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Angels & hippopotami

Aording to the urrent theoretial understanding,

the neutrino �elds/states of de�nite �avor are super-

positions of the �elds/states with de�nite, generally

di�erent masses [and vie versa℄:

να =
∑

i

Vαiνi for neutrino �elds,

|να〉 =
∑

i

V ∗
αi|νi〉 for neutrino states;

α = e, µ, τ , i = 1, 2, 3, . . .

Here Vαi are the elements of the Ponteorvo-Maki-

Nakagawa-Sakata neutrino vauum mixing matrixV.

This onept leads to the possibility of transitions

between di�erent �avor neutrinos, να ←→ νβ ,

phenomenon known as neutrino �avor osillations.

We'll not appeal to the sweet but a bit ephemeral

herubs (neutrino �avor eigen�elds/eigenstates) and

will only deal with the more prosai hippos (neutrino

mass eigen�elds/eigenstates).



Some hallenges against the QM approah

� Equal-momentum assumption

Massive neutrinos νi have, by assumption, equal momenta: pi = pν (i = 1, 2, 3).

This key assumption seems to be unphysial being referene-frame (RF) dependent;

if it is true in a ertain RF then it is false in another RF moving with the veloity v:

E′
i = Γv [Ei − (vpν)], p

′
i = pν + Γv

[
Γv(vpν)

Γv + 1
− Ei

]
v,

⇓ [assuming, as neessary for osillations, that mi 6= mj ] ⇓
p
′
i − p

′
j =

(
E′

j − E′
i

)
v = Γv (Ej − Ei)v 6= 0.

Treating the Lorentz transformation as ative, we onlude that the EM assumption

annot be applied to the non-monoenergeti ν beams (the ase in real-life experiments).

∗ A similar objetion exists against the alternative equal-energy assumption; in that ase

E′
i − E′

j = Γv (pj − pi)v 6= 0,
∣∣p′

i − p
′
j

∣∣ =
√
|pi − pj |2 + Γ 2

v [(pi − pj)v]
2 6= 0.

∗ Can the EM (or EE) assumption be at least a good approximation? Alas, no, it annot.

Let νµs arise from πµ2 deays. If the pion beam has a wide momentum spetrum � from

subrelativisti to ultrarelativisti (as it is, e.g., for osmi-ray partiles), the EM (or EE) ondition

annot be valid even approximately within the whole spetral range of the pion neutrinos.



� Light-ray approximation

The propagation time T is, by assumption, equal to the distane L traveled by the

neutrino between prodution and detetion points. But, if the massive neutrino

omponents have the same momentum pν , their veloities are in fat di�erent:

vi =
pν√

p2
ν +m2

i

=⇒ |vi − vj | ≈
∆m2

ji

2E2
ν

.

One may naively expet that during the time T the neutrino νi travels the distane

Li = |vi|T ; therefore, there must be a spread in distanes of eah neutrino pair

δLij = Li − Lj ≈
∆m2

ji

2E2
ν

L, where L = cT = T .

∆m2
ji Eν L Lij |δLij |

∆m2
23 1 GeV 2R⊕ 0.1R⊕ ∼ 10−12

m

∆m2
23 1 TeV RG ∼ 100 kps 100R⊕ ∼ 10−4

m

∆m2
21 1 MeV 1 AU 0.25R⊕ ∼ 10−3

m

The values of δLij listed in the Table seem to be fantastially small. But

Are they su�iently small to preserve the oherene in any irumstane?

In other words:

What is the natural sale of the distanes and times?



� Can light neutrinos osillate into heavy ones or vise versa?

[Can ative neutrinos osillate into sterile ones or vise versa?℄

The naive QM answer is Yes. Why not? If, at least, both να (light) and νs (heavy) are

ultrarelativisti [ |pν | ≫ max(m1,m2,m3, . . . ,M), ℄ one obtains the same formula for the

osillation probability Pαs(L), sine the QM formalism has no any limitation to the

neutrino mass hierarhy.

Possibility of suh transitions is a basis for many speulations in astrophysis and osmology.

But! Assume again that the neutrino soure is πµ2 deay and M > mπ. Then the

transition να → νs in the pion rest frame is forbidden by the energy onservation.

⇓

There must be some limitations & �aws in the QM formula. What are they?

� Do CνB neutrinos osillate?

The lightest (standard) reli neutrinos are most probably relativisti or perhaps even

ultrarelativisti, while the heaviest ones an be subrelativisti. The QM approah is unable

to work with suh a set of ν states.

� Does the motion of the neutrino soure a�et the transition probabilities?

To answer these and many similar questions

One has to unload the UR approximation & develop a ovariant formalism.



In the QFT approah (on-shell regime): the e�etive (most probable) energies and momenta

of virtual νis are found to be funtions of the masses, most probable momenta and momentum

spreads of all partiles (wave pakets) involved into the neutrino prodution/detetion proesses.

In partiular, in the two limiting ases � ultrarelativisti (UR) and nonrelativisti (NR):

Ultrarelativisti ase

(|q0s,d| ∼ |qs,d| ≫ mi)





Ei= Eν
[
1− nri − mr2i + . . .

]
,

|pi|= Eν

[
1− (n+ 1) ri −

(
m+ n+

1

2

)
r2i + . . .

]
,

vi= 1− ri −
(
2n+

1

2

)
r2i + . . . < 1,

Nonrelativisti ase

(|q0s,d| ∼ mi ≫ |qs,d|)





Ei= mi +
miv

2
i

2

(
1 +

3

4
δi + . . .

)
,

|pi|= mivi

(
1 +

1

2
δi + . . .

)
,

vi≈
̺il

1 + ̺0i
≪ 1,

p
s
i p

s
f

p
d
i p

d
f

q  = p  - p
d
f

d
i

d

ν
i

q  = p  - ps
f

s
i

s

Eν ≈ q0s ≈ −q0d, ri =
m2

i

2E2
ν

≪ 1 (UR),

̺µi =
1

miR

[
ℜ̃µ0

s

(
mi − q0s

)
+ ℜ̃µ0

d

(
mi + q0d

)
− ℜ̃µk

s qks + ℜ̃µk
d qkd

]
, |̺µi | ≪ 1 (NR).



� De�nite momentum assumption

In the naive QM approah, the assumed de�nite momenta of neutrinos (both να and νi)

imply that the spatial oordinates of neutrino prodution (Xs) and detetion (Xd) are

fully unertain (Heisenberg's priniple).

⇓

The distane L = |Xd −Xs| is unertain too, that makes the standard QM formula for

the �avor transition probabilities to be formally speaking senseless.

In the orret theory, the neutrino momentum unertainty δ|pν | must be at least of the

order of min(1/Ds, 1/Dd), where Ds and Dd are the harateristi dimensions (along the

neutrino beam) of the soure and detetor �mahines�.

⇓

The neutrino states must be some wave pakets (WP) [though having very small spreads℄

dependent, in general, on the quantum states of the partiles [or, more exatly, also WPs℄

whih partiipate in the prodution and detetion proesses.

In the on-shell QFT regime: the e�etive WPs of virtual UR νjs are found to be

ψ
(∗)
j = exp

{
±i(pjXs,d)−

D̃2
j

E2
ν

[
(pjX)2 −m2

jX
2
]
}
, X = Xd −Xs,

where pj = (Ej ,pj) and Xs,d are the 4-vetors whih haraterize the spae-time loation of

the ν prodution and detetion proesses, while D̃j are ertain (in general, omplex-valued)

funtions of the masses, mean momenta and momentum spreads of all partiles involved into

these proesses. [D̃j/Eν and thereby ψj are Lorentz invariants.℄



QFT approah by the example of the reation π⊕n → µ⊕τp

+

pn 

−τ

µπ   +



The rare reations π+⊕n→ µ+⊕ τ−p+ . . . were (indiretly) deteted by several un-

derground experiments (Kamiokande, IMB, Super-Kamiokande) with atmospheri neu-

trinos. In 2010, OPERA experiment (INFN, LNGS) with the CNGS neutrino beam

announed the diret observation of the �rst τ− andidate event.
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V    are the elements of the
Pontecorvo-Maki-Nakagawa
-Sakata (PMNS) neutrino
vacuum mixing matrix V.
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In the standard S matrix pertur-
bation theory the in & out states 
are one-particle Fock states:
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In the standard S matrix pertur-
bation theory the in & out states 
are one-particle Fock states:

Feynman graphs
 with Fock legs
cannot reproduce
 the ν-oscillation
   phenomenon.
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For simplicity we
omit the spin and 
other discrete 
variables in the
WP states
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WP can be roughly thought
as small interpenetrative
cloudlets which are, however,
much larger than the micro-
scopic interaction regions in
the source/detector vertices. 
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Unlucky configurations of the
world tubes of the WPs are
suppressed by the geometric

factors exp(-S   ) dependent 
of the in & out momenta and
space-time coordinates.

s,d
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Lucky configurations of
the world tubes are not
suppressed, providing
possibility for interaction
of the WPs.

( )exp ~ 1s∝ −S

( )exp ~ 1d∝ −S
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The impact points X  and X 
are the 4-vectors defined as

s d

1

sX T T T x T x
1

d n p n n p pX T T T T x T x T x

0 1

, ,  ( )   s d s dx x p p X X֏ ֏
ù ù ù ù ù



Compendium

In the ovariant WP approah there are several spae-time sales:

• τs,dI and rs,dI � mirosopi interation time and radius de�ned by the Lagrangian.

• τs,dO and rs,dO � mirosopi or small marosopi dimensions of the overlap spae-time

regions of the interating in and out pakets in the soure and detetor verties, de�ned

by the e�etive dimensions of the pakets.

The suppression of the �unluky� on�gurations of world tubes of the external pakets

is governed by the geometri fator in the amplitude:

exp [− (Ss +Sd)],

where Ss,d are the positive Lorentz and translation invariant funtions of {pκ} and

{xκ}. In the simplest one-parameter model of WP (relativisti Gaussian paket)

Ss,d =
∑

σ2
κ
|b⋆

κ
|2, κ ∈ S,D,

where σκ are the momentum speeds of the paket κ and b⋆
κ

is the lassial impat

vetor in the rest frame of the paket κ relative to the orresponding impat point.

• T = X0
d −X0

s and L = |Xd −Xs| � large marosopi neutrino time of �ight and way

between the impat points Xs and Xd.

For light neutrinos, the impat points lie very lose to the light one T 2 = L2

.

• In usual irumstane (terrestrial experiments) τs,dI ≪ τs,dO ≪ T and rs,dI ≪ rs,dO ≪ L.



Feynman rules for multipeds

We will deal with the generi onneted diagrams. ⊲

• The legs orrespond to asymptotially free inom-

ing (�in�) and outgoing (�out�) WPs in the oor-

dinate representation. Here and below: Is (Fs)

is the set of in (out) pakets in the blok Xs

(�soure�), Id (Fd) is the set of in (out) pakets

in the blok Xd (�detetor�).

• The internal line denotes the ausal Green's

funtion of the neutrino mass eigen�eld νi

(i = 1, 2, 3, . . .). The bloks Xs and Xd are as-

sumed to be marosopially separated.

Xd

Xs

νi

}
}

Is

Id

Fs

Fd

}

}

• For narrow enough WPs, the Feynman rules for the legs are to be modi�ed in a trivial way:

〈0|Ψ(y)|p, s〉 7−→ 〈0|Ψ(y)|p, s, x〉 ≈ e−ipxus(p)ψ(p, x− y), (1)

where Ψ(y) is the relevant free �eld operator [in Eq. (1), the spin-

1
2

fermion �eld is used

as an example℄ and ψ(p, x) is the Lorentz-invariant funtion,

ψ(p, x) =

∫
dk

(2π)32Ek

eikxφ(k,p) = ψ(0, x⋆),

satisfying the Klein-Gordon equation, (�x −m2)ψ(p, x) = 0. [Therefore it is a relativisti

wave paket in terms of onventional (axiomati) sattering theory.℄



For spinor �eld, the approximation (1) is valid under the following ondition

|i∇y lnψ(p, x− y) + p| ≪ 2Ep.

It is, in fat, one the basi (most limiting) approximations in the whole formalism.

The approximate relations analogous to (1) take plae for the free �elds of any spin,

providing us with the modi�ed Feynman-rule fators for the external lines of any diagram.

In partiular, the relation (1) is exat for the salar and pseudosalar �elds Φ(x):

〈0|Φ(y)|p, s = 0, x〉 = e−ipxψ(p, x− y)
• As a result for eah external line, the standard (plain-wave) Feynman fator must

be multiplied by

e−ipa(xa−y)ψa (pa, xa − y) for a ∈ Is⊕Id

or

e+ipb(xb−y)ψ∗
b (pb, xb − y) for b ∈ Fs⊕Fd,

where eah funtion ψ
κ
(p

κ
, y) (κ = a, b) is spei�ed by the mass m

κ

and the set

of momentum spreads σκ = {σ1κ, σ2κ, . . .}.

Generally the set σκ forms a tensor with respet to Lorentz transformations. But to

simplify matters, below we'll only disuss a model with one salar spread parameter σκ.

• The internal lines and loops in the diagram remain unhanged.



Relativisti Gaussian pakets (RGP)

In further onsideration we will use a simple model of the QFT WP state � relativisti

Gaussian paket (RGP), in whih the form-fator funtion φ(k,p) is of the form

φ(k,p) =
2π2

σ2K1(m2/2σ2)
exp

(
−EkEp − kp

2σ2

)
def
= φG(k,p), (2)

where K1 is the modi�ed Bessel funtion of the 3rd kind of order 1.

K1(z) = z

∫ ∞

1

dte−zt
√
t2 − 1

(
| arg z| < π

2

)
.

One may easily hek that the funtion (2) has the orret plane-wave limit and satis�es the

normalization onditions. In what follows we assume σ2 ≪ m2

[invariant ondition of the

tightness℄. Then the funtion (2) an be rewritten as the asymptoti expansion in σ2/m2

:

φG(k,p) =
2π3/2

σ2

m

σ
exp

[
(k − p)2
4σ2

] [
1 +

3σ2

4m2
+O

(
σ4

m4

)]
.

In the nonrelativisti ase, (|k|+ |p|)2 ≪ 4m2
, and only in this ase this form fator oinides,

up to a normalization fator, with the widely used (nonovariant) Gaussian distribution:

ϕG(k− p) ∝ exp

[
− (k− p)2

4σ2

]
.



Exat wavefuntion ψ(p, x) for RGP

ψ(p, x) =
K1(ζm

2/2σ2)

ζK1(m2/2σ2)
def
= ψG(p, x),

ζ =

√
1− 4σ2

m2
[σ2x2 + i(px)].

Nondi�uent regime, ontrated RGP

Under the following N&S onditions

σ2(x0⋆)
2 ≪ m2/σ2, σ2|x⋆|2 ≪ m2/σ2,

(px)2 ≪ m4/σ4, (px)2 −m2x2 ≪ m4/σ4

[two pairs of the inequalities are equivalent℄

RGP is stable in its rest frame (p⋆ = 0):

ψG(0, x
⋆) = exp

(
imx0⋆ − σ2

x
2
⋆

)
.

In the lab. frame it has the following form:

σ x  /m2 0

σ x  /m2 3

|ψ  |
G

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

σ x  /m2 0

|ψ  |
G

σ x  /m2 3

(time)

(space)

3D plot of |ψG(0, x⋆)| vs. σ2x0⋆/m and σ2x3⋆/m,

assuming x⋆ = (0, 0, x3⋆) and σ = 0.1m.

ψG(p, x) = exp
{
i(px)− (σ/m)2

[
(px)2 −m2x2

]}
.



Table: Maximum permissible values of σ (σmax =
√
mΓ, σ ≪ σmax),

the ratios Γ/σmax =
√

Γ/m, and the minimum permissible e�e-

tive dimensions dmin
⋆ ≈ 1.55/

√
mΓ in the CRGP approximation (on-

trated RGP) for the partiles most relevant to neutrino prodution.

Partile σmax (eV) Γ/σmax dmin
⋆ (m)

µ± 1.78× 10−1 1.68× 10−9 1.72× 10−4

τ± 2.01× 103 1.13× 10−6 1.53× 10−8

π± 1.88 1.35× 10−8 1.63× 10−5

π0 3.25× 104 2.41× 10−4 0.94× 10−9

K± 5.12 1.04× 10−8 5.99× 10−6

K0
S 6.05× 101 1.22× 10−7 5.07× 10−7

K0
L 2.53 5.08× 10−9 1.21× 10−5

D± 1.09× 103 5.82× 10−7 2.82× 10−8

D0 1.73× 103 9.28× 10−7 1.77× 10−8

D±
s 1.61× 103 8.18× 10−7 1.91× 10−8

B± 1.46× 103 2.76× 10−7 2.11× 10−8

B0 1.51× 103 2.86× 10−7 2.03× 10−8

B0
s 1.55× 103 2.89× 10−7 1.98× 10−8

n 2.64× 10−5 2.81× 10−14 1.16
Λ 5.28× 101 4.74× 10−7 5.81× 10−7

Λ±
c 2.74× 103 1.87× 10−6 1.12× 10−8

The maximum permissible

deviation of the mean mass

of CRGP from the �eld mass,

δm = m−m, is equal to

δmmax ≈ 3σ2
max

2m
= 1.5Γ,

So, the orretion to the �eld

mass of the short-lived reso-

nanes an be essential, but

for the long-lived partiles we

an (and we must) to neglet

the weighting e�et.



Calulation of a marosopi amplitude

As a pratially important (and very gen-

eral) example, we onsider the harged-

urrent indued prodution of harged lep-

tons ℓ+α and ℓ−β (e, µ, τ ) in the proess

Is⊕Id → F ′
s + ℓ+α ⊕ F ′

d + ℓ−β , (3)

We assume for de�niteness that all the

external substates Is, Id, F ′
s, and F ′

d

onsist exlusively of (asymptotially free)

hadroni WPs. Consequently, if α 6= β, the

proess (3) violates the lepton numbers Lα

and Lβ that is only possible via exhange of

massive neutrinos (no matter whether they

are Dira or Majorana partiles).

In the lowest nonvanishing (4-th) order in

eletroweak oupling, the proess (3) is de-

sribed by the sum of the diagrams shown

in the �gure.

The impat points Xs and Xd are maro-

sopially separated and all asymptoti on-

ditions are assumed to be ful�lled.

}

}I s

ν
j

W

Fs

ℓα
+

}F's

q q’
}

} }

I d

W

Fd

ℓβ
−

F'd

q’ q

Xs

Xd

qs

(q    = p  − p    )s,d in out

hadrons hadrons

hadrons hadrons

qd

QCD

QCD
A marosopi Feynman diagram desribing the

�avor-violating proess (3) with νj exhange.



The shortest possible sketh of the alulation

1. Quark-lepton bloks. We use the Standard Model (SM) phenomenologially extended by

inlusion of a neutrino mass term. The quark-lepton bloks are desribed by the Lagrangian

LW (x) = − g

2
√
2
[jℓ(x)W (x) + jq(x)W (x) + H.c.],

where g is the SU(2) oupling onstant, jℓ and jq are the weak harged urrents:

jµℓ (x) =
∑

αi

V ∗
αi νi(x)O

µℓα(x), jµq (x) =
∑

qq′

V
′∗
qq′ q(x)O

µq′(x), [Oµ = γµ(1− γ5)] .

Here Vαi (α = e, µ, τ ; i = 1, 2, 3) and V ′
qq′ (q = u, c, t; q′ = d, s, b) are the elements of the

neutrino and quark mixing matries (V and V ′

, respetively).

The normalized amplitude is given by the 4th order of the perturbation theory in g:

Aβα= 〈out|S|in〉 (〈in|in〉〈out|out〉)−1/2

=
1

N

(−ig
2
√
2

)4

〈Fs⊕Fd|T
∫
dxdx′dydy′ : jℓ(x)W (x) : : jq(x

′)W †(x′) :

× : j†ℓ (y)W
†(y) : : j†q(y

′)W (y′) : Sh|Is⊕Id〉. (4)

The normalization fator N in the CRGP approximation is given by

N 2 = 〈in|in〉〈out|out〉 =
∏

κ∈Is⊕Id⊕Fs⊕Fd

2EκVκ(pκ
).



2. Hadroni bloks. The strong and (possibly) eletromagneti interations responsible for

nonperturbative proesses of fragmentation and hadronization are desribed by the hadroni

(QCD) interation Lagrangian Lh(x) and the orresponding part of the full S-matrix is

Sh = exp

[
i

∫
dzLh(z)

]
.

The following fatorization theorem an be proved

〈F ′
s⊕F ′

d|T
[
: jµq (x) : Sh : j†νq (y) :

]
|Is⊕Id〉 = J µ

s (pS)J ν†
d (pD)

×
[ ∏

a∈Is

e−ipaxaψa(pa, xa − x)
][ ∏

b∈F ′

s

eipbxbψ∗
b (pb, xb − x)

]

×
[ ∏

a∈Id

e−ipaxaψa(pa, xa − y)
][ ∏

b∈F ′

d

eipbxbψ∗
b (pb, xb − y)

]
.

Here Js(pS) and Jd(pD) are the c-number hadroni urrents in whih the strong interations

are taken into aount nonperturbatively, and pS and pD denote the sets of the momentum

and spin variables of the hadroni states.

The proof is based on the assumed narrowness of the WPs in the momentum spae, marosopi

remoteness of the interation regions in the soure and detetor verties, and the onsideration of

translation invariane.

The expliit form of the hadroni urrents Js and Jd is not needed for our purposes.



By applying the new Feynman rules, fatorization theorem, and other (both the standard QFT

and speulative) triks the amplitude (4) an be rewritten in the following way:

Aβα =
g4

64N
∑

j

VβjJ ν†
d u(pβ)Oν′G

jν′µ′

νµ ({p
κ
, xκ})Oµ′v(pα)J µ

s V
∗
αj , (5)

G
jν′µ′

νµ ({p
κ
, xκ}) =

∫
dq

(2π)4
Vd(q)∆

ν′

ν (q − pβ)∆j(q)∆µ′

µ (q + pα)Vs(q). (6)

Here Vs(q) and Vd(q) are the overlap integrals,

Vs,d(q) =

∫
dxe±iqx

[ ∏

a∈Is

e−ipaxaψa (pa, xa − x)
][ ∏

b∈Fs

eipbxbψ∗
b (pb, xb − x)

]
,

= (2π)4δ̃s,d (q∓qs,d) exp [−Ss,d ± i (q∓qs,d) ·Xs,d]

[the last equality is written in CRGP approximation℄; Js,d are the hadroni urrents; ∆j

and

∆ν
µ are the propagators of, respetively, the massive neutrino νj and W boson:

∆j(q) =
i

q̂ −mj + i0
= i

q̂ +mj

q2 −m2
j + i0

, et.

The bare W boson propagator has the form ∆
(b)
µν (k) = −i gµν − kµkν/m2

W

k2 −m2
W + i0

. However, the expliit

form of ∆µν is not used below. So the latter an be thought of as the exat renormalized propagator.

The main problem is in alulation of the integral (6). Depending of the alulation method

and orresponding assumptions one obtains several regimes in the behaviour of the amplitude.
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But (very preliminary onlusion!)

for the experiments with reator & geophysial νes the situation seems to be quite opposite.



Mirosopi probability

In both on-shell and o�-shell regimes the fatorized and squared amplitude |Aβα|2 for

the standard light neutrinos an �nally be represented in the following form:

|Aβα|2 =
(2π)4δs(p− qs)Vs∏

κ∈S 2E
κ
V

κ

(2π)4δd(p+ qd)Vd∏
κ∈D 2E

κ
V

κ

×
∣∣M−

s M
−∗

d +M+
s M

+∗

d

∣∣2

×N
∣∣∣
∑

j

V ∗
αjVβj e

−Ωj

∣∣∣
2

.

(7)

Here M±

s,d are the matrix elements of the prodution and detetion of the left/right

polarized neutrinos in the orresponding subproesses:

M±
s =

g2

8
u±(p)J µ

s ∆µν(p+ pα)O
νv(pα) [ME of Is → F ′

s + ℓ+α + ν±],

M±∗

d =
g2

8
u(pβ)O

ν∆νµ(p− pβ)J ∗µ
d u±(p) [ME of ν± + Id → F ′

d + ℓ−β ].

Clearly for usual reations the ontribution with M+
s M

+∗

d in (7) and neutrino masses in

the terms M−
s M

−∗

d an safely be negleted. In other words, neutrinos in the matrix

elements M−
s and M−∗

d an be treated as real massless neutrinos with p2 = 0.



Other ommon for on-shell and o�-shell regimes ingredients in (7) are:

• Eκ =
√
pκ and Vκ are, respetively, the mean energies and (small) e�etive

volumes of the pakets κ.

• δs,d are the �smeared� δ funtions � analogous (but not idential) to the funtions

δ̃s,d involved into the amplitude.

Responsible for the approximate onservation of the energy and momentum.

δs,d(K) =

∫
dx

(2π)4
exp

(
iKx− 1

2
ℜµν

s,dxµxν

)
=

exp

(
−1

2
ℜ̃µν

s,dKµKν

)

(2π)2
√
|ℜs,d|

,

• Vs,d are the e�etive 4D overlap volumes of the external pakets in the soure and

detetor,

Vs,d =

∫
dx

∏

κ∈S,D

|ψ
κ
(p

κ
, x

κ
− x)|2 =

π2 exp (−2Ss,d)

4
√

|ℜs,d|
.

Responsible for the �geneti seletion� between the luky and unluky on�guration

of the world tubes of the wave pakets.



The distintion between the two regimes is quite essential:

N ∝





ℜµν l
µlν

|X|2 (1 + orretions) [very slowly depend on pj ] on-shell,

detℜ
ℜµνp

µ
j p

ν
j

(1 + orretions) [very slowly depend on X ] o�-shell,

Ωj =






i(pjX)+

[
(pjX)2 −m2

jX
2
]

ℜµνp
µ
j p

ν
j

+ orretions on-shell,

i(pjX)+

(
ppj −m2

j

)2

4ℜµνp
µ
j p

ν
j

+ T
µν
j XµXν + orretions o�-shell.

Here

T
µν
j =

(RµνRλρ −RµλRνρ) p
λ
j p

ρ
j

Rµνp
µ
j p

ν
j

,

l = (1, l), l =
X

|X| , X = Xs −Xd = (X0,X).

As is disussed below, the 4-momenta pj in the two regimes represent rather di�erent

mathematial onstrutions, whih have very di�erent physial meaning.



• It the on-shell UR regime, the omponents of pj are given by the series in powers

of the small dimensionless parameter

rj =
m2

j

2E2
ν

,

namely,

p0j = Eν

(
1−

∞∑

n=1

CE
n r

n
j

)
, |pj | = Eν

(
1−

∞∑

n=1

CP
n r

n
j

)
, pj = |pj |l, p2 = m2

j .

where

Eν =
(Y l)

ℜµν lµlν
, Y µ = ℜ̃µν

s qsν − ℜ̃µν
d qdν , ℜµν = ℜµν

s + ℜµν
d

[for any tensor A, Ã = gA−1g.℄

• It the o�-shell UR regime pj is not the e�etive neutrino 4-momentum, but only a

notation:

pj = (p0j ,p), p0j ≡ Ej =
√

|p|2 +m2
j ,

while the �intrinsi� 4-momentum is

p = (p0,p), pµ = ℜµνYν ≈ qs ≈ −qd =⇒ p2 6= m2
j .

Moreover, there is no a straight onnetion between the diretions of p and l.



Neutrino Virtuality

In the O�-shell regime the al-

lowed neutrino virtuality is de-

�ned by the ondition

∣∣p2 −m2
j

∣∣ . 2
√
Gj

(j = 1, 2, 3, . . .),

where Gj is generally a Lorentz

invariant funtion of the exter-

nal momenta.

For neutrinos from πµ2-deay

Gj =
(
σ2
πm

2
µ + σ2

µm
2
π

) ∣∣u⋆
µ

∣∣2.

So

∣∣p2 −m2
j

∣∣

an be large om-

paring to m2
j .
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q
|p −m |2 2

j

(1 eV)
2

σ  (eV)
π

σ  (eV)
µ

max[       ]

10 -1

The virtuality is not itself an observable quantity sine the virtual neutrinos ontribute to

〈〈|A|2〉〉 (the squared amplitude averaged over the unmeasured external momenta) exatly as

the normal on-shell partiles. However ertain �footprints� of the virtuality must remain in

the orretions to the survival and transition probabilities. In partiular, the transitions �light

neutrinos ←→ heavy neutrinos should be strongly suppressed.
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The real sale of the e�et is not yet well understood. More studies are needed.
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9 orders!

Does the asymptotic convergence fail here?

The fine structure is

very sensitive to the

  neutrino masses



Marosopi averaging for the on-shell ase

To obtain the observable quantities, the probability must be averaged/integrated over all the

unmeasurable or unused variables of inoming/outgoing WP states.

Suh a proedure an only be realized by taking into aount the onditions of a real experimental

environment. For these reasons and in this sense, further analysis is model-dependent.

A thought experiment:

Assume that the statistial distributions of the inoming WPs a ∈ Is,d over the mean

momenta, spin projetions, and spae-time oordinates in the soure and detetor �devies�

an be desribed by the one-partile distribution funtions fa(pa, sa, xa). It is onvenient to

normalize eah funtion fa to the total number, Na(x
0
a), of the pakets a at a time x0a:

∑

sa

∫
dxadpa

(2π)3
fa(pa, sa, xa) = Na(x

0
a) (a ∈ Is,d).

For larity purposes, we (re)de�ne the terms �soure� and �detetor�:

S = supp
{xa; a∈Is}

∏

a

fa(pa, sa, xa), D = supp
{xa; a∈Id}

∏

a

fa(pa, sa, xa).

We'll use the same terms and notation S and D also for the orresponding devies.



Suppositions:

[1℄ S and D are �nite and mutually disjoint within the spae domain.

[2℄ E�etive spatial dimensions of S and D are small ompared to the mean distane between

them but very large ompared to the e�etive dimensions (∼ σ−1
κ

) of all WPs in S and D.

[3℄ The experiment measures only the momenta of the seondaries in D and (due to [2℄) the

bakground events aused by the seondaries falling into D from S an be negleted.

[4℄ The detetion e�ieny in D is 100%.

With these assumptions, the marosopially averaged probability represents the total number,

dNαβ , of the events reorded in D and onsisted of the seondaries b∈Fd having the mean

momenta between pb and pb + dpb:

〈〈|Aβα|2〉〉 ≡ dNαβ =
∑

spins

∫ ∏

a∈Is

dxadpafa(pa, sa, xa)

(2π)32EaVa

∫ ∏

b∈Fs

dxbdpb

(2π)32EbVb
Vs

×
∫ ∏

a∈Id

dxadpafa(pa, sa, xa)

(2π)32EaVa

∫ ∏

b∈Fd

dxb[dpb]

(2π)32EbVb
Vd

×
∫
dEν(2π)

4δs(pν − qs)|Ms|2(2π)4δd(pν + qd)|Md|2

× D

2
√
π(2π)3L2

∣∣∣
∑

j

V ∗
αjVβj e

−Ωj(T,L)−Θj

∣∣∣
2

.

(8)

⊲
∑

spins denotes the averaging/summation over the spin projetions of the in/out states.

⊲ Symbol [dpb] indiates that integration in variable pb is not performed, i.e.,

∫
[dpb] = dpb.



Under additional assumptions, the unwieldy expression (8) an be simpli�ed in a few steps.

Step 1: Multidimensional integration in WP positions.

Supposition 5: The distribution funtions fa(pa, sa, xa), as well as the fators e−Ωj−Ω∗

i /L2

vary at large (marosopi) sales.

The integrand

∏
κ
|ψκ (p

κ
, xκ − x)|2 in the integral representation of the overlap volumes (??) is

essentially di�erent from zero only if the lassial word lines of all pakets κ pass through a small

(though not neessarily mirosopi) viinity of the integration variable.

Supposition 6: The edge e�ets an be negleted (a harmless extension of supposition [2℄).

As a result, expression (8) is redued to the following:

dNαβ =
∑

spins

∫
dx

∫
dy

∫
dPs

∫
dPd

∫
dEν

D
∣∣∣
∑

j V
∗
αjVβj e

−Ωj(T,L)−Θj

∣∣∣
2

16π7/2|y − x|2 , (9)

where T = y0 − x0, L = |y − x| and we have de�ned the di�erential forms

dPs=
∏

a∈Is

dpafa(pa, sa, x)

(2π)32Ea

∏

b∈Fs

dpb

(2π)32Eb
(2π)4δs(pν − qs)|Ms|2, (10a)

dPd=
∏

a∈Id

dpafa(pa, sa, y)

(2π)32Ea

∏

b∈Fd

[dpb]

(2π)32Eb
(2π)4δd(pν + qd)|Md|2. (10b)



Step 2: Integration in time variables.

Supposition 7: During the experiment, the distribution funtions fa in S and D vary slowly

enough with time so that they an be modelled by the �retangular ledges�

fa(pa, sa;x) = θ
(
x0 − x01

)
θ
(
x02 − x0

)
fa(pa, sa;x) for a∈Is,

fa(pa, sa; y) = θ
(
y0 − y01

)
θ
(
y02 − y0

)
fa(pa, sa;y) for a∈Id.

(11)

Supposition 8: The time intervals needed to swith on and swith o� the soure and detetor

are negligibly small in omparison with periods of stationarity τs = x02 − x01 and τd = y02 − y01 .

In ase of detetor, the step funtions in (11) an be thought as the �hardware� or �software�

trigger onditions. The periods of stationarity τs and τd an be astronomially long, as it is for

the solar and atmospheri neutrino experiments (τs ≫ τd in these ases), or very short, like in the

experiments with short-pulsed aelerator beams (when usually τs . τd).

Within the model (11), the only time-dependent fator in the integrand of (9) is e−Ωj−Ω∗

i

. So

the problem is redued to the (omparatively) simple integral

∫ y0

2

y0

1

dy0
∫ x0

2

x0

1

dx0 e−Ωj(y
0−x0,L)−Ω∗

i (y
0−x0,L) =

√
π

2D
τd exp

(
iϕij −A

2
ij

)
Sij . (12)



In relation (12) we have adopted the following notation:

Sij =
exp

(
−B

2
ij

)

4τdD

2∑

l,l′=1

(−1)l+l′+1

Ierf

[
2D

(
x0l − y0l′ +

L

vij

)
− iBij

]
, (13)

Aij = (vj − vi)DL =
2πDL

EνLij
, Bij =

∆Eji

4D
=

πn

2DLij
, (14)

ϕij =
2πL

Lij
, Lij =

4πEν

∆m2
ij

,
1

vij
=

1

2

(
1

vi
+

1

vj

)
,

∆m2
ij = m2

i −m2
j , ∆Eij = Ei − Ej ,

Ierf(z) =

∫ z

0

dz′erf(z′) +
1√
π

= z erf(z) +
1√
π
e−z2 ,

For a more realisti desription of the beam pulse experiments, the model (11) ould be readily

extended by inlusion of a series of retangular ledges followed by pauses during whih fa = 0.

Then substituting (12) into (9) we obtain:

dNαβ = τd
∑

spins

∫
dx

∫
dy

∫
dPs

∫
dPd

∫
dEν
Pαβ(Eν , |y − x|)
4(2π)3|y − x|2 , (15a)

≡ τd
VDVS

∫
dx

∫
dy

∫
dΦν

∫
dσνDPαβ(Eν , |y − x|). (15b)

The di�erential forms dPs,d in (15a) are are given by eq. (10) after substitution fa 7−→ fa.



Explanation of the fators in eq. (15b).

⊲ VS and VD are the spatial volumes of the soure and detetor, respetively.

⊲ The di�erential form dΦν is de�ned in suh a way that the integral

dx

VS

∫
dΦν

dEν
= dx

∑

spins∈S

∫
dPsEν

2(2π)3|y − x|2 (16)

is the �ux density of neutrinos in D, produed through the proesses Is → F ′
sℓ

+
αν in S.

More preisely, it is the number of neutrinos appearing per unit time and unit neutrino energy in

an elementary volume dx around the point x ∈ S, travelling within the solid angle dΩν about the

�ow diretion l = (y − x)/|y − x| and rossing a unit area, plaed around the point y ∈ D and

normal to l.

⊲ The di�erential form dσνD is de�ned in suh a way that

1

VD

∫
dydσνD =

∑

spins∈D

∫
dydPd

2Eν

(17)

represents the di�erential ross setion of the neutrino sattering o� the detetor as a whole.

In the partiular (and the most basially important) ase of neutrino sattering in the reation

νa→ F ′
dℓ

−
β , provided that the momentum distribution of the target satterers a is su�iently

narrow, the di�erential form dσνD beomes exatly the elementary di�erential ross setion of this

reation multiplied by the total number of the partiles a in D.



⊲ Now let us address the last sub-integral multiplier of (15b), given by

Pαβ(Eν , L) =
∑

ij

V ∗
αiVαjVβiV

∗
βjSij exp

(
iϕij −A

2
ij −Θij

)
, (18)

Θij = Θi +Θj , (19)

Θj =
m2

j

2D2

[
(n0 − n) +

1

2

(
m− n− n

2) rj +
(
n+

1

2

)(
m− n− n

2) r2j +O(r3j )
]
. (20)

Let's remind that the funtion n0 oinides with n in the ase of exat energy-momentum

onservation in the verties of our diagram. Therefore in the viinity of the maximum of the

produt δ̃s(pν − qs)δ̃d(pν + qd) (that is at qs ≈ −qd ≈ pν), whih gives the main ontribution

into the event rate, one an neglet the alternating quantity n0 − n in (20). Taking into

aount the properties of the funtion n one an also neglet the O(r2j ) ontributions in (20).

In this approximation

Θj ≈
m4

jR
(
m− n− n2

)

4E2
ν

≈ m4
jR

(
m− n0 − n20

)

4E2
ν

=
m4

j

[
R00R − (Rl)2

]

4RE2
ν

≥ 0.

• The fator (18) oinides with the QM expression for the neutrino �avor transition

probability,

P(QM)
αβ (Eν , L) =

∑

ij

VαiVβjV
∗
αjV

∗
βi exp (iϕij). (21)

provided that Sij = 1, Θij = 0, and Aij = 0. So it an be onsidered as a QFT re�nement of

the QM result.



BUT!

• A probabilisti interpretation of the funtion Pαβ an be only provisionally true, beause the

fators Sij and Aij involve the funtions D, n, and m strongly dependent on the neutrino

energy Eν and external momenta p
κ

; all these (exept for the momenta of seondaries in D)

are variables of integration in (15b).

As a result, the fator Pαβ , as funtion of α and β, does not satisfy the unitarity relations

∑

α

P(QM)
αβ =

∑

β

P(QM)
αβ = 1, �

whih are a ommonplae in the QM theory of neutrino osillations.

The point is that the domains and shapes of the funtions D, n, and m are essentially di�erent

for eah of the nine leptoni pairs (ℓα, ℓβ). These di�erenes are governed by kinematis of the

subproesses in S and D (in partiular, their thresholds), that is, eventually, by the leptoni masses

(me, mµ, mτ ) and by the momentum spreads (σe, σµ, στ ) of the leptoni WPs, whih are not

neessarily equal to eah other, perhaps even within an order of magnitude.

So Pαβ(Eν , L) is not the �avor transition probability!

Having this in mind, we will all it probability fator for short.



Two more drawbaks.

• The probabilisti treatment of Pαβ is even more problemati

in real-life experiments, beause the detetor event rate (with

ℓβ appearane in our ase) is de�ned by many subproesses of

di�erent types in the soure and detetor.

E.g., in the astrophysial, atmospheri and aelerator neutrino

experiments, the major proesses of neutrino prodution are

in-�ight deays of light mesons (πµ2, Kµ2, Kµ3, Ke3, et.)

and muons, and neutrino interations with a detetor medium

onsist of an inoherent superposition of exlusive reations of

many types, � from (quasi)elasti to deep-inelasti.

• A �tehnial� drawbak is the dependene of the funtion Sij

(whih will be referred to as deoherene fator) on the four

�instrumental� time parameters x01, x
0
2, y

0
1 , y

0
2 .

So far we have made no assumption onerning a �synhronization� of the time windows

(x01, x
0
2) and (y01 , y

0
2). Thus, it is no wonder that the deoherene fator turns to be

vanishingly small in magnitude if these windows are not adjusted to aount that the

representative time of ultrarelativisti neutrino propagation from S to D is equal to the mean

distane, L, between S and D.

Before disussing the role of the deoherene fator, we perform one more, and the last,

simpli�ation of the formula for dNαβ .



Step 3: Spatial averaging.

s

L

Ws

W

O

dO

Source

Detector

LNW

LFW

We'll use again the requirement that the harateristi dimensions

of S and D are small ompared to L. Under ertain onditions,

this allows us to replae approximately

|y − x| 7−→ L =
1

2Ωs

∫

Ωs

dΩ
(
LF

Ω + LN
Ω

)
,

dΦν 7−→ dΦν , dσνD 7−→ d σνD.

The range of appliability of this approximation is in general muh

more limited than that of (15b), as a onsequene of additional re-

stritions impliitly imposed on the distribution funtions fa, absolute

dimensions and geometry of S and D.

These issues are bit more ompliated then the onsidered above and

must be the subjet of speial attention in the neutrino osillation

experiments.

Finally, we arrive at the very simple but rather rough expression:

dNαβ = τd

∫
dΦν

∫
dσνDPαβ(Eν , L). (22)

In partiular, it is not appliable to the short base-line experiments.



Synhronized measurements.

Let us now return to the deoherene

fator, limiting ourselves to a onsider-

ation of �synhronized� measurements,

in whih

x01,2 = ∓τs
2
, y01,2 = L∓ τd

2
.

τ  /2s−τ  /2s 0 x 0

L+τ  /2dL−τ  /2d L y 0

≃T   L
−

− − −

With ertain tehnial simpli�ations, the fator (13) an be expressed through a real-valued

funtion S(t, t′, b) of three dimensionless variables, namely:

Sij = S (Dτs,Dτd,Bij),

2t′S(t, t′, b) = exp
(
−b2

)
Re

[

Ierf

(
t+ t′ + ib

)
− Ierf

(
t− t′ + ib

)]
.

Diagonal deoherene funtion.

S(t, t′, 0) =
1

2t′
[

Ierf

(
t+ t′

)
− Ierf

(
t− t′

)]
≡ S0(t, t

′), (23)

This funtion orresponds to the noninterferene (neutrino mass independent) deoherene

fators Sii. The following inequalities an be proved:

0 < S0(t, t
′) < 1, S0(t, t

′) < t/t′ for t′ ≥ t, S0(t+ δt, t) > erf(δt) for δt > 0.



The strong dependene of the ommon suppression fator S0(t, t
′) on its arguments at t . t′

provides a potential possibility of an experimental estimation of the funtion D (or, rather, of

its mean values within the phase spaes), based on the measuring the ount rate

dRαβ = dNαβ/τd as a funtion of τd and τs (at �xed L) and omparing the data with the

results of Monte-Carlo simulations.

The optimal strategy of suh an experiment should be a subjet of a dediated analysis.



For the important speial ase, t′ = t (representative, in partiular, for the experiments with

aelerator neutrino beams), we �nd

S0(t, t) = erf(2t)− 1− e−4t2

2
√
πt

≈





2t√
π

(
1− 2t2

3
+

8t4

15

)

for t≪ 1,

1− 1

2
√
πt

for t≫ 1.

(24)



Nondiagonal deoherene funtion.

The deoherene funtion S(t, t′, b) at b 6= 0 is muh more involved.

At very large t, the funtion S(t, t, b) beomes nearly independent on t, slowly approahing the

asymptoti behavior S(t, t, b) ∼ exp(−b2) (t, t′ →∞).



S(t, t′, 0.1). S(t, t′, 0.2). S(t, t′, 0.3).

S(t, t′, 0.4). S(t, t′, 0.5). S(t, t′, 0.6).



S(t, t′, 0.7). S(t, t′, 0.8). S(t, t′, 0.9).

S(t, t′, 1.0). S(t, t′, 1.5). S(t, t′, 2.0).



S(t, t′, 3.0). S(t, t′, 4.0). S(t, t′, 5.0).

S(t, t′, 6.0). S(t, t′, 7.0). S(t, t′, 8.0).



S(t, t′, 9.0). S(t, t′, 10.0). S(t, t′, 15.0)/S0(t, t
′).

S(t, t′, 0.10)/S0(t, t
′),

S(t, t′, 0.50)/S0(t, t
′).

S(t, t′, 0.75)/S0(t, t
′),

S(t, t′, 1.00)/S0(t, t
′).

S(t, t′, 1.50)/S0(t, t
′),

S(t, t′, 4.00)/S0(t, t
′).



Flavor transitions in the asymptoti regime.

In the asymptoti regime,

S(t, t′, b) ∼ exp(−b2) (t, t′ →∞).

the probability fator (18) takes on the form already known from the literature,

a

Pαβ(Eν , L) =
∑

ij

V ∗
αiVαjVβiV

∗
βj exp

(
iϕij −A

2
ij −B

2
ij −Θij

)
, (25)

but with the essential di�erene that the fators Aij , Bij and Θij do depend (through the

funtions D, n, and m) on the neutrino energy and momenta of the external WPs.

This dependene drastially a�ets the magnitude and shape of these fators if at least some of the

WPs have relativisti momenta (that is always the ase in the ontemporary neutrino osillation

experiments). For su�iently small and/or hierarhially di�erent momentum spreads σκ , the

funtions Aij and Bij may vary in many orders of magnitude through their multidimensional

domain.

a

See, e.g., C. Giunti C and C. W. Kim, Fundamentals of Neutrino Physis and Astrophysis (Oxford

University Press In., New York, 2007); M. Beuthe, Osillations of neutrinos and mesons in quantum

�eld theory, Phys. Rept. 375 (2003) 105 (arXiv:hep-ph/0109119); M. Beuthe, Towards a unique formula

for neutrino osillations in vauum, Phys. Rev. D 66 (2002) 013003 (arXiv:hep-ph/0202068).



Major properties of the transition �probability�.

• The fators exp
(
−A

2
ij

)

(with i6=j) suppress the interferene terms at the distanes

exeeding the �oherene length�

Lcoh
ij =

1

∆vijD
≫ |Lij | (∆vij = |vj − vi|),

when the νWPs ψi
Xd

(pi, Xs −Xd) and ψ
j
Xd

(pj , Xs −Xd) are strongly separated in spae

and do not interfere anymore. Clearly Lcoh
ij →∞ in the plane-wave limit.

• The suppression fators exp
(
−B

2
ij

)

(i6=j) work in the opposite situation, when the

external pakets in S or D (or in both S and D) are strongly deloalized

The gross dimension of the the neutrino prodution and absorption regions in S and D is of

the order of 1/D. The interferene terms vanish if this sale is large ompared to the

�interferene length�

Lint
ij =

1

4∆Eij
=

2Lij

πn
.

In other words, the QFT approah predits vanishing of neutrino osillations in the plane-wave

limit. In this limit, the �avor transition probability does not depend on L, Eν , and neutrino

masses mi and beomes

PPWL

αβ =
∑

i

|Vαi|2|Vβi|2 ≤ 1.

Thereby, a nontrivial interferene of the diagrams with the intermediate neutrinos of di�erent

masses is only possible if D 6= 0.



• Our detailed analysis of the generi subproesses 1→ 2, 1→ 3, and 2→ 2 shows that

D 6= 0 if in both verties of the marodiagram there are at least two interating WPs κ (no

matter in or out) with σκ 6= 0.

• The same requirement unavoidably leads to the vanishing of the non-diagonal terms, when

the mean distane between S and D beomes large enough in omparison with the oherene

lengths Lcoh
ij .

• As a result, the range of appliability of the standard QM formula for the neutrino

osillations probability is limited by rather restritive onditions,

〈(
2πDL

EνLij

)2
〉
≪ 1,

〈(
πn

2DLij

)2
〉
≪ 1, and 〈|Θij |〉 ≪ 1.

The angle brakets symbolize an averaging over the phase subspae of the proess (3) whih

provides the main ontribution into the measured ount rate.

The obtained onditions were obtained under a number of assumptions and simpli�ations, whih are

not neessarily adequate to fully represent the real-life experimental onditions. Our onsideration

suggests that in the analysis and interpretation of real data one should take into aount the

operating times of the soure and detetor, their geometry and dimensions, expliit form of the

distribution funtions of in-pakets, and other tehnial details.



Intermediary onlusions on the QFT approah.

• The standard QM ν-osillation formula has rather limited range of appliability.

• The QFT modi�ations drastially depend upon:

⊲ momentum spreads of the external �in� and �out�

wave pakets (determined by the environment

and �prehistory� of their reation).

⊲ reation types in the neutrino prodution and

absorption regions [�soure� and �detetor�, re-

spetively℄ and phase-spae domains of these re-

ations;

⊲ time interval of steady-state operation of the

soure �mahine � and detetor exposure time;

⊲ dimensions of the soure and detetor and dis-

tane between them.

• Essentially all QFT e�ets are deoherent and thus lead to a �smoothing�, distortion or

vanishing of the interferene (osillating) terms and to a general suppression of the

neutrino event rate in the detetor. This suppression is potentially measurable in the

dediate experiments.

The predited e�ets are usually small. But �small� does not mean �uninteresting�.

Modern physis �ourishes due mainly to disovering very small e�ets.


