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The aims and 
on
epts of the �eld-

theoreti
al approa
h.

The main purposes:

To de�ne the domain of appli
ability of the standard

quantum-me
hani
al (QM) theory of va
uum neutrino

os
illations and obtain the QFT 
orre
tions to it.

The basi
 
on
epts:

• The �ν-os
illation� phenomenon in QFT is noth-

ing else than a result of interferen
e of the ma
ro-

s
opi
 Feynman diagrams perturbatively des
ribing

the lepton number violating pro
esses with the mas-

sive neutrino �elds as internal lines (propagators).

• The external lines of the ma
rodiagrams are wave

pa
kets rather than plane waves (therefore the stan-

dard S matrix approa
h should be revised).

• The external wave pa
ket states are the 
ovari-

ant superpositions of the standard one-parti
le Fo
k

states, satisfying a 
orresponden
e prin
iple.
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Angels & hippopotami

A

ording to the 
urrent theoreti
al understanding,

the neutrino �elds/states of de�nite �avor are super-

positions of the �elds/states with de�nite, generally

di�erent masses [and vi
e versa℄:

να =
∑

i

Vαiνi for neutrino �elds,

|να〉 =
∑

i

V ∗
αi|νi〉 for neutrino states;

α = e, µ, τ , i = 1, 2, 3, . . .

Here Vαi are the elements of the Ponte
orvo-Maki-

Nakagawa-Sakata neutrino va
uum mixing matrixV.

This 
on
ept leads to the possibility of transitions

between di�erent �avor neutrinos, να ←→ νβ ,

phenomenon known as neutrino �avor os
illations.

We'll not appeal to the sweet but a bit ephemeral


herubs (neutrino �avor eigen�elds/eigenstates) and

will only deal with the more prosai
 hippos (neutrino

mass eigen�elds/eigenstates).



Some 
hallenges against the QM approa
h

� Equal-momentum assumption

Massive neutrinos νi have, by assumption, equal momenta: pi = pν (i = 1, 2, 3).

This key assumption seems to be unphysi
al being referen
e-frame (RF) dependent;

if it is true in a 
ertain RF then it is false in another RF moving with the velo
ity v:

E′
i = Γv [Ei − (vpν)], p

′
i = pν + Γv

[
Γv(vpν)

Γv + 1
− Ei

]
v,

⇓ [assuming, as ne
essary for os
illations, that mi 6= mj ] ⇓
p
′
i − p

′
j =

(
E′

j − E′
i

)
v = Γv (Ej − Ei)v 6= 0.

Treating the Lorentz transformation as a
tive, we 
on
lude that the EM assumption


annot be applied to the non-monoenergeti
 ν beams (the 
ase in real-life experiments).

∗ A similar obje
tion exists against the alternative equal-energy assumption; in that 
ase

E′
i − E′

j = Γv (pj − pi)v 6= 0,
∣∣p′

i − p
′
j

∣∣ =
√
|pi − pj |2 + Γ 2

v [(pi − pj)v]
2 6= 0.

∗ Can the EM (or EE) assumption be at least a good approximation? Alas, no, it 
annot.

Let νµs arise from πµ2 de
ays. If the pion beam has a wide momentum spe
trum � from

subrelativisti
 to ultrarelativisti
 (as it is, e.g., for 
osmi
-ray parti
les), the EM (or EE) 
ondition


annot be valid even approximately within the whole spe
tral range of the pion neutrinos.



� Light-ray approximation

The propagation time T is, by assumption, equal to the distan
e L traveled by the

neutrino between produ
tion and dete
tion points. But, if the massive neutrino


omponents have the same momentum pν , their velo
ities are in fa
t di�erent:

vi =
pν√

p2
ν +m2

i

=⇒ |vi − vj | ≈
∆m2

ji

2E2
ν

.

One may naively expe
t that during the time T the neutrino νi travels the distan
e

Li = |vi|T ; therefore, there must be a spread in distan
es of ea
h neutrino pair

δLij = Li − Lj ≈
∆m2

ji

2E2
ν

L, where L = cT = T .

∆m2
ji Eν L Lij |δLij |

∆m2
23 1 GeV 2R⊕ 0.1R⊕ ∼ 10−12


m

∆m2
23 1 TeV RG ∼ 100 kps 100R⊕ ∼ 10−4


m

∆m2
21 1 MeV 1 AU 0.25R⊕ ∼ 10−3


m

The values of δLij listed in the Table seem to be fantasti
ally small. But

Are they su�
iently small to preserve the 
oheren
e in any 
ir
umstan
e?

In other words:

What is the natural s
ale of the distan
es and times?



� Can light neutrinos os
illate into heavy ones or vise versa?

[Can a
tive neutrinos os
illate into sterile ones or vise versa?℄

The naive QM answer is Yes. Why not? If, at least, both να (light) and νs (heavy) are

ultrarelativisti
 [ |pν | ≫ max(m1,m2,m3, . . . ,M), ℄ one obtains the same formula for the

os
illation probability Pαs(L), sin
e the QM formalism has no any limitation to the

neutrino mass hierar
hy.

Possibility of su
h transitions is a basis for many spe
ulations in astrophysi
s and 
osmology.

But! Assume again that the neutrino sour
e is πµ2 de
ay and M > mπ. Then the

transition να → νs in the pion rest frame is forbidden by the energy 
onservation.

⇓

There must be some limitations & �aws in the QM formula. What are they?

� Do CνB neutrinos os
illate?

The lightest (standard) reli
 neutrinos are most probably relativisti
 or perhaps even

ultrarelativisti
, while the heaviest ones 
an be subrelativisti
. The QM approa
h is unable

to work with su
h a set of ν states.

� Does the motion of the neutrino sour
e a�e
t the transition probabilities?

To answer these and many similar questions

One has to unload the UR approximation & develop a 
ovariant formalism.



In the QFT approa
h (on-shell regime): the e�e
tive (most probable) energies and momenta

of virtual νis are found to be fun
tions of the masses, most probable momenta and momentum

spreads of all parti
les (wave pa
kets) involved into the neutrino produ
tion/dete
tion pro
esses.

In parti
ular, in the two limiting 
ases � ultrarelativisti
 (UR) and nonrelativisti
 (NR):

Ultrarelativisti
 
ase

(|q0s,d| ∼ |qs,d| ≫ mi)





Ei= Eν
[
1− nri − mr2i + . . .

]
,

|pi|= Eν

[
1− (n+ 1) ri −

(
m+ n+

1

2

)
r2i + . . .

]
,

vi= 1− ri −
(
2n+

1

2

)
r2i + . . . < 1,

Nonrelativisti
 
ase

(|q0s,d| ∼ mi ≫ |qs,d|)





Ei= mi +
miv

2
i

2

(
1 +

3

4
δi + . . .

)
,

|pi|= mivi

(
1 +

1

2
δi + . . .

)
,

vi≈
̺il

1 + ̺0i
≪ 1,

p
s
i p

s
f

p
d
i p

d
f

q  = p  - p
d
f

d
i

d

ν
i

q  = p  - ps
f

s
i

s

Eν ≈ q0s ≈ −q0d, ri =
m2

i

2E2
ν

≪ 1 (UR),

̺µi =
1

miR

[
ℜ̃µ0

s

(
mi − q0s

)
+ ℜ̃µ0

d

(
mi + q0d

)
− ℜ̃µk

s qks + ℜ̃µk
d qkd

]
, |̺µi | ≪ 1 (NR).



� De�nite momentum assumption

In the naive QM approa
h, the assumed de�nite momenta of neutrinos (both να and νi)

imply that the spatial 
oordinates of neutrino produ
tion (Xs) and dete
tion (Xd) are

fully un
ertain (Heisenberg's prin
iple).

⇓

The distan
e L = |Xd −Xs| is un
ertain too, that makes the standard QM formula for

the �avor transition probabilities to be formally speaking senseless.

In the 
orre
t theory, the neutrino momentum un
ertainty δ|pν | must be at least of the

order of min(1/Ds, 1/Dd), where Ds and Dd are the 
hara
teristi
 dimensions (along the

neutrino beam) of the sour
e and dete
tor �ma
hines�.

⇓

The neutrino states must be some wave pa
kets (WP) [though having very small spreads℄

dependent, in general, on the quantum states of the parti
les [or, more exa
tly, also WPs℄

whi
h parti
ipate in the produ
tion and dete
tion pro
esses.

In the on-shell QFT regime: the e�e
tive WPs of virtual UR νjs are found to be

ψ
(∗)
j = exp

{
±i(pjXs,d)−

D̃2
j

E2
ν

[
(pjX)2 −m2

jX
2
]
}
, X = Xd −Xs,

where pj = (Ej ,pj) and Xs,d are the 4-ve
tors whi
h 
hara
terize the spa
e-time lo
ation of

the ν produ
tion and dete
tion pro
esses, while D̃j are 
ertain (in general, 
omplex-valued)

fun
tions of the masses, mean momenta and momentum spreads of all parti
les involved into

these pro
esses. [D̃j/Eν and thereby ψj are Lorentz invariants.℄



QFT approa
h by the example of the rea
tion π⊕n → µ⊕τp

+

pn 

−τ

µπ   +



The rare rea
tions π+⊕n→ µ+⊕ τ−p+ . . . were (indire
tly) dete
ted by several un-

derground experiments (Kamiokande, IMB, Super-Kamiokande) with atmospheri
 neu-

trinos. In 2010, OPERA experiment (INFN, LNGS) with the CNGS neutrino beam

announ
ed the dire
t observation of the �rst τ− 
andidate event.
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V    are the elements of the
Pontecorvo-Maki-Nakagawa
-Sakata (PMNS) neutrino
vacuum mixing matrix V.

 αi
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In the standard S matrix pertur-
bation theory the in & out states 
are one-particle Fock states:
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In the standard S matrix pertur-
bation theory the in & out states 
are one-particle Fock states:

Feynman graphs
 with Fock legs
cannot reproduce
 the ν-oscillation
   phenomenon.
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In our approach the in and out
states are covariant wave packets:
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For simplicity we
omit the spin and 
other discrete 
variables in the
WP states
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V
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V
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Source vertex

Detector vertex

Interaction region

Interaction region

WP can be roughly thought
as small interpenetrative
cloudlets which are, however,
much larger than the micro-
scopic interaction regions in
the source/detector vertices. 

µ

π
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Interaction region

( )exp 1s∝ − ≪S

( )exp 1d∝ − ≪S

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q )

Unlucky configurations of the
world tubes of the WPs are
suppressed by the geometric

factors exp(-S   ) dependent 
of the in & out momenta and
space-time coordinates.

s,d
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ν (q )i

W  (k)
+

W  (k')−

p  -p ,x *p pn  -p ,x *n n

−τ   -p ,x *
τ τ

µ   -p ,x *
µ µπ   -p ,x *

π π
+

V
µi
*

V
τi

Source vertex

Detector vertex
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µ
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n

π
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q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q )

Lucky configurations of
the world tubes are not
suppressed, providing
possibility for interaction
of the WPs.

( )exp ~ 1s∝ −S

( )exp ~ 1d∝ −S
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τ τ
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π π
+

V
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V
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Source vertex

Detector vertex
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   (microscopic)

µ
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p
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π

ν
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Interaction region
   (microscopic)

Overlap
 region

Interaction region

Micro- or small
  macroscopic

Large macroscopic distance
    (up to astronomical)

Micro-
scopic



+

ν (q )i

W  (k)
+

W  (k')−

p  -p ,x *p pn  -p ,x *n n

−τ   -p ,x *
τ τ

µ   -p ,x *
µ µπ   -p ,x *

π π
+

V
µi
*

V
τi

Source vertex

Detector vertex

Interaction region

µ

τ

p

n

π

ν
i

Interaction region

Overlap
 region

Overlap region

Impact

point Xs

Impact pointXd

)

The impact points X  and X 
are the 4-vectors defined as

s d

1

sX T T T x T x
1

d n p n n p pX T T T T x T x T x

0 1

, ,  ( )   s d s dx x p p X X֏ ֏
ù ù ù ù ù



Compendium

In the 
ovariant WP approa
h there are several spa
e-time s
ales:

• τs,dI and rs,dI � mi
ros
opi
 intera
tion time and radius de�ned by the Lagrangian.

• τs,dO and rs,dO � mi
ros
opi
 or small ma
ros
opi
 dimensions of the overlap spa
e-time

regions of the intera
ting in and out pa
kets in the sour
e and dete
tor verti
es, de�ned

by the e�e
tive dimensions of the pa
kets.

The suppression of the �unlu
ky� 
on�gurations of world tubes of the external pa
kets

is governed by the geometri
 fa
tor in the amplitude:

exp [− (Ss +Sd)],

where Ss,d are the positive Lorentz and translation invariant fun
tions of {pκ} and

{xκ}. In the simplest one-parameter model of WP (relativisti
 Gaussian pa
ket)

Ss,d =
∑

σ2
κ
|b⋆

κ
|2, κ ∈ S,D,

where σκ are the momentum speeds of the pa
ket κ and b⋆
κ

is the 
lassi
al impa
t

ve
tor in the rest frame of the pa
ket κ relative to the 
orresponding impa
t point.

• T = X0
d −X0

s and L = |Xd −Xs| � large ma
ros
opi
 neutrino time of �ight and way

between the impa
t points Xs and Xd.

For light neutrinos, the impa
t points lie very 
lose to the light 
one T 2 = L2

.

• In usual 
ir
umstan
e (terrestrial experiments) τs,dI ≪ τs,dO ≪ T and rs,dI ≪ rs,dO ≪ L.



Feynman rules for multipeds

We will deal with the generi
 
onne
ted diagrams. ⊲

• The legs 
orrespond to asymptoti
ally free in
om-

ing (�in�) and outgoing (�out�) WPs in the 
oor-

dinate representation. Here and below: Is (Fs)

is the set of in (out) pa
kets in the blo
k Xs

(�sour
e�), Id (Fd) is the set of in (out) pa
kets

in the blo
k Xd (�dete
tor�).

• The internal line denotes the 
ausal Green's

fun
tion of the neutrino mass eigen�eld νi

(i = 1, 2, 3, . . .). The blo
ks Xs and Xd are as-

sumed to be ma
ros
opi
ally separated.

Xd

Xs

νi

}
}

Is

Id

Fs

Fd

}

}

• For narrow enough WPs, the Feynman rules for the legs are to be modi�ed in a trivial way:

〈0|Ψ(y)|p, s〉 7−→ 〈0|Ψ(y)|p, s, x〉 ≈ e−ipxus(p)ψ(p, x− y), (1)

where Ψ(y) is the relevant free �eld operator [in Eq. (1), the spin-

1
2

fermion �eld is used

as an example℄ and ψ(p, x) is the Lorentz-invariant fun
tion,

ψ(p, x) =

∫
dk

(2π)32Ek

eikxφ(k,p) = ψ(0, x⋆),

satisfying the Klein-Gordon equation, (�x −m2)ψ(p, x) = 0. [Therefore it is a relativisti


wave pa
ket in terms of 
onventional (axiomati
) s
attering theory.℄



For spinor �eld, the approximation (1) is valid under the following 
ondition

|i∇y lnψ(p, x− y) + p| ≪ 2Ep.

It is, in fa
t, one the basi
 (most limiting) approximations in the whole formalism.

The approximate relations analogous to (1) take pla
e for the free �elds of any spin,

providing us with the modi�ed Feynman-rule fa
tors for the external lines of any diagram.

In parti
ular, the relation (1) is exa
t for the s
alar and pseudos
alar �elds Φ(x):

〈0|Φ(y)|p, s = 0, x〉 = e−ipxψ(p, x− y)
• As a result for ea
h external line, the standard (plain-wave) Feynman fa
tor must

be multiplied by

e−ipa(xa−y)ψa (pa, xa − y) for a ∈ Is⊕Id

or

e+ipb(xb−y)ψ∗
b (pb, xb − y) for b ∈ Fs⊕Fd,

where ea
h fun
tion ψ
κ
(p

κ
, y) (κ = a, b) is spe
i�ed by the mass m

κ

and the set

of momentum spreads σκ = {σ1κ, σ2κ, . . .}.

Generally the set σκ forms a tensor with respe
t to Lorentz transformations. But to

simplify matters, below we'll only dis
uss a model with one s
alar spread parameter σκ.

• The internal lines and loops in the diagram remain un
hanged.



Relativisti
 Gaussian pa
kets (RGP)

In further 
onsideration we will use a simple model of the QFT WP state � relativisti


Gaussian pa
ket (RGP), in whi
h the form-fa
tor fun
tion φ(k,p) is of the form

φ(k,p) =
2π2

σ2K1(m2/2σ2)
exp

(
−EkEp − kp

2σ2

)
def
= φG(k,p), (2)

where K1 is the modi�ed Bessel fun
tion of the 3rd kind of order 1.

K1(z) = z

∫ ∞

1

dte−zt
√
t2 − 1

(
| arg z| < π

2

)
.

One may easily 
he
k that the fun
tion (2) has the 
orre
t plane-wave limit and satis�es the

normalization 
onditions. In what follows we assume σ2 ≪ m2

[invariant 
ondition of the

tightness℄. Then the fun
tion (2) 
an be rewritten as the asymptoti
 expansion in σ2/m2

:

φG(k,p) =
2π3/2

σ2

m

σ
exp

[
(k − p)2
4σ2

] [
1 +

3σ2

4m2
+O

(
σ4

m4

)]
.

In the nonrelativisti
 
ase, (|k|+ |p|)2 ≪ 4m2
, and only in this 
ase this form fa
tor 
oin
ides,

up to a normalization fa
tor, with the widely used (non
ovariant) Gaussian distribution:

ϕG(k− p) ∝ exp

[
− (k− p)2

4σ2

]
.



Exa
t wavefun
tion ψ(p, x) for RGP

ψ(p, x) =
K1(ζm

2/2σ2)

ζK1(m2/2σ2)
def
= ψG(p, x),

ζ =

√
1− 4σ2

m2
[σ2x2 + i(px)].

Nondi�uent regime, 
ontra
ted RGP

Under the following N&S 
onditions

σ2(x0⋆)
2 ≪ m2/σ2, σ2|x⋆|2 ≪ m2/σ2,

(px)2 ≪ m4/σ4, (px)2 −m2x2 ≪ m4/σ4

[two pairs of the inequalities are equivalent℄

RGP is stable in its rest frame (p⋆ = 0):

ψG(0, x
⋆) = exp

(
imx0⋆ − σ2

x
2
⋆

)
.

In the lab. frame it has the following form:

σ x  /m2 0

σ x  /m2 3

|ψ  |
G

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

σ x  /m2 0

|ψ  |
G

σ x  /m2 3

(time)

(space)

3D plot of |ψG(0, x⋆)| vs. σ2x0⋆/m and σ2x3⋆/m,

assuming x⋆ = (0, 0, x3⋆) and σ = 0.1m.

ψG(p, x) = exp
{
i(px)− (σ/m)2

[
(px)2 −m2x2

]}
.



Table: Maximum permissible values of σ (σmax =
√
mΓ, σ ≪ σmax),

the ratios Γ/σmax =
√

Γ/m, and the minimum permissible e�e
-

tive dimensions dmin
⋆ ≈ 1.55/

√
mΓ in the CRGP approximation (
on-

tra
ted RGP) for the parti
les most relevant to neutrino produ
tion.

Parti
le σmax (eV) Γ/σmax dmin
⋆ (
m)

µ± 1.78× 10−1 1.68× 10−9 1.72× 10−4

τ± 2.01× 103 1.13× 10−6 1.53× 10−8

π± 1.88 1.35× 10−8 1.63× 10−5

π0 3.25× 104 2.41× 10−4 0.94× 10−9

K± 5.12 1.04× 10−8 5.99× 10−6

K0
S 6.05× 101 1.22× 10−7 5.07× 10−7

K0
L 2.53 5.08× 10−9 1.21× 10−5

D± 1.09× 103 5.82× 10−7 2.82× 10−8

D0 1.73× 103 9.28× 10−7 1.77× 10−8

D±
s 1.61× 103 8.18× 10−7 1.91× 10−8

B± 1.46× 103 2.76× 10−7 2.11× 10−8

B0 1.51× 103 2.86× 10−7 2.03× 10−8

B0
s 1.55× 103 2.89× 10−7 1.98× 10−8

n 2.64× 10−5 2.81× 10−14 1.16
Λ 5.28× 101 4.74× 10−7 5.81× 10−7

Λ±
c 2.74× 103 1.87× 10−6 1.12× 10−8

The maximum permissible

deviation of the mean mass

of CRGP from the �eld mass,

δm = m−m, is equal to

δmmax ≈ 3σ2
max

2m
= 1.5Γ,

So, the 
orre
tion to the �eld

mass of the short-lived reso-

nan
es 
an be essential, but

for the long-lived parti
les we


an (and we must) to negle
t

the weighting e�e
t.



Cal
ulation of a ma
ros
opi
 amplitude

As a pra
ti
ally important (and very gen-

eral) example, we 
onsider the 
harged-


urrent indu
ed produ
tion of 
harged lep-

tons ℓ+α and ℓ−β (e, µ, τ ) in the pro
ess

Is⊕Id → F ′
s + ℓ+α ⊕ F ′

d + ℓ−β , (3)

We assume for de�niteness that all the

external substates Is, Id, F ′
s, and F ′

d


onsist ex
lusively of (asymptoti
ally free)

hadroni
 WPs. Consequently, if α 6= β, the

pro
ess (3) violates the lepton numbers Lα

and Lβ that is only possible via ex
hange of

massive neutrinos (no matter whether they

are Dira
 or Majorana parti
les).

In the lowest nonvanishing (4-th) order in

ele
troweak 
oupling, the pro
ess (3) is de-

s
ribed by the sum of the diagrams shown

in the �gure.

The impa
t points Xs and Xd are ma
ro-

s
opi
ally separated and all asymptoti
 
on-

ditions are assumed to be ful�lled.

}

}I s

ν
j

W

Fs

ℓα
+

}F's

q q’
}

} }

I d

W

Fd

ℓβ
−

F'd

q’ q

Xs

Xd

qs

(q    = p  − p    )s,d in out

hadrons hadrons

hadrons hadrons

qd

QCD

QCD
A ma
ros
opi
 Feynman diagram des
ribing the

�avor-violating pro
ess (3) with νj ex
hange.



The shortest possible sket
h of the 
al
ulation

1. Quark-lepton blo
ks. We use the Standard Model (SM) phenomenologi
ally extended by

in
lusion of a neutrino mass term. The quark-lepton blo
ks are des
ribed by the Lagrangian

LW (x) = − g

2
√
2
[jℓ(x)W (x) + jq(x)W (x) + H.c.],

where g is the SU(2) 
oupling 
onstant, jℓ and jq are the weak 
harged 
urrents:

jµℓ (x) =
∑

αi

V ∗
αi νi(x)O

µℓα(x), jµq (x) =
∑

qq′

V
′∗
qq′ q(x)O

µq′(x), [Oµ = γµ(1− γ5)] .

Here Vαi (α = e, µ, τ ; i = 1, 2, 3) and V ′
qq′ (q = u, c, t; q′ = d, s, b) are the elements of the

neutrino and quark mixing matri
es (V and V ′

, respe
tively).

The normalized amplitude is given by the 4th order of the perturbation theory in g:

Aβα= 〈out|S|in〉 (〈in|in〉〈out|out〉)−1/2

=
1

N

(−ig
2
√
2

)4

〈Fs⊕Fd|T
∫
dxdx′dydy′ : jℓ(x)W (x) : : jq(x

′)W †(x′) :

× : j†ℓ (y)W
†(y) : : j†q(y

′)W (y′) : Sh|Is⊕Id〉. (4)

The normalization fa
tor N in the CRGP approximation is given by

N 2 = 〈in|in〉〈out|out〉 =
∏

κ∈Is⊕Id⊕Fs⊕Fd

2EκVκ(pκ
).



2. Hadroni
 blo
ks. The strong and (possibly) ele
tromagneti
 intera
tions responsible for

nonperturbative pro
esses of fragmentation and hadronization are des
ribed by the hadroni


(QCD) intera
tion Lagrangian Lh(x) and the 
orresponding part of the full S-matrix is

Sh = exp

[
i

∫
dzLh(z)

]
.

The following fa
torization theorem 
an be proved

〈F ′
s⊕F ′

d|T
[
: jµq (x) : Sh : j†νq (y) :

]
|Is⊕Id〉 = J µ

s (pS)J ν†
d (pD)

×
[ ∏

a∈Is

e−ipaxaψa(pa, xa − x)
][ ∏

b∈F ′

s

eipbxbψ∗
b (pb, xb − x)

]

×
[ ∏

a∈Id

e−ipaxaψa(pa, xa − y)
][ ∏

b∈F ′

d

eipbxbψ∗
b (pb, xb − y)

]
.

Here Js(pS) and Jd(pD) are the c-number hadroni
 
urrents in whi
h the strong intera
tions

are taken into a

ount nonperturbatively, and pS and pD denote the sets of the momentum

and spin variables of the hadroni
 states.

The proof is based on the assumed narrowness of the WPs in the momentum spa
e, ma
ros
opi


remoteness of the intera
tion regions in the sour
e and dete
tor verti
es, and the 
onsideration of

translation invarian
e.

The expli
it form of the hadroni
 
urrents Js and Jd is not needed for our purposes.



By applying the new Feynman rules, fa
torization theorem, and other (both the standard QFT

and spe
ulative) tri
ks the amplitude (4) 
an be rewritten in the following way:

Aβα =
g4

64N
∑

j

VβjJ ν†
d u(pβ)Oν′G

jν′µ′

νµ ({p
κ
, xκ})Oµ′v(pα)J µ

s V
∗
αj , (5)

G
jν′µ′

νµ ({p
κ
, xκ}) =

∫
dq

(2π)4
Vd(q)∆

ν′

ν (q − pβ)∆j(q)∆µ′

µ (q + pα)Vs(q). (6)

Here Vs(q) and Vd(q) are the overlap integrals,

Vs,d(q) =

∫
dxe±iqx

[ ∏

a∈Is

e−ipaxaψa (pa, xa − x)
][ ∏

b∈Fs

eipbxbψ∗
b (pb, xb − x)

]
,

= (2π)4δ̃s,d (q∓qs,d) exp [−Ss,d ± i (q∓qs,d) ·Xs,d]

[the last equality is written in CRGP approximation℄; Js,d are the hadroni
 
urrents; ∆j

and

∆ν
µ are the propagators of, respe
tively, the massive neutrino νj and W boson:

∆j(q) =
i

q̂ −mj + i0
= i

q̂ +mj

q2 −m2
j + i0

, et
.

The bare W boson propagator has the form ∆
(b)
µν (k) = −i gµν − kµkν/m2

W

k2 −m2
W + i0

. However, the expli
it

form of ∆µν is not used below. So the latter 
an be thought of as the exa
t renormalized propagator.

The main problem is in 
al
ulation of the integral (6). Depending of the 
al
ulation method

and 
orresponding assumptions one obtains several regimes in the behaviour of the amplitude.
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Very rough &
assessed result

But (very preliminary 
on
lusion!)

for the experiments with rea
tor & geophysi
al νes the situation seems to be quite opposite.



Mi
ros
opi
 probability

In both on-shell and o�-shell regimes the fa
torized and squared amplitude |Aβα|2 for

the standard light neutrinos 
an �nally be represented in the following form:

|Aβα|2 =
(2π)4δs(p− qs)Vs∏

κ∈S 2E
κ
V

κ

(2π)4δd(p+ qd)Vd∏
κ∈D 2E

κ
V

κ

×
∣∣M−

s M
−∗

d +M+
s M

+∗

d

∣∣2

×N
∣∣∣
∑

j

V ∗
αjVβj e

−Ωj

∣∣∣
2

.

(7)

Here M±

s,d are the matrix elements of the produ
tion and dete
tion of the left/right

polarized neutrinos in the 
orresponding subpro
esses:

M±
s =

g2

8
u±(p)J µ

s ∆µν(p+ pα)O
νv(pα) [ME of Is → F ′

s + ℓ+α + ν±],

M±∗

d =
g2

8
u(pβ)O

ν∆νµ(p− pβ)J ∗µ
d u±(p) [ME of ν± + Id → F ′

d + ℓ−β ].

Clearly for usual rea
tions the 
ontribution with M+
s M

+∗

d in (7) and neutrino masses in

the terms M−
s M

−∗

d 
an safely be negle
ted. In other words, neutrinos in the matrix

elements M−
s and M−∗

d 
an be treated as real massless neutrinos with p2 = 0.



Other 
ommon for on-shell and o�-shell regimes ingredients in (7) are:

• Eκ =
√
pκ and Vκ are, respe
tively, the mean energies and (small) e�e
tive

volumes of the pa
kets κ.

• δs,d are the �smeared� δ fun
tions � analogous (but not identi
al) to the fun
tions

δ̃s,d involved into the amplitude.

Responsible for the approximate 
onservation of the energy and momentum.

δs,d(K) =

∫
dx

(2π)4
exp

(
iKx− 1

2
ℜµν

s,dxµxν

)
=

exp

(
−1

2
ℜ̃µν

s,dKµKν

)

(2π)2
√
|ℜs,d|

,

• Vs,d are the e�e
tive 4D overlap volumes of the external pa
kets in the sour
e and

dete
tor,

Vs,d =

∫
dx

∏

κ∈S,D

|ψ
κ
(p

κ
, x

κ
− x)|2 =

π2 exp (−2Ss,d)

4
√

|ℜs,d|
.

Responsible for the �geneti
 sele
tion� between the lu
ky and unlu
ky 
on�guration

of the world tubes of the wave pa
kets.



The distin
tion between the two regimes is quite essential:

N ∝





ℜµν l
µlν

|X|2 (1 + 
orre
tions) [very slowly depend on pj ] on-shell,

detℜ
ℜµνp

µ
j p

ν
j

(1 + 
orre
tions) [very slowly depend on X ] o�-shell,

Ωj =






i(pjX)+

[
(pjX)2 −m2

jX
2
]

ℜµνp
µ
j p

ν
j

+ 
orre
tions on-shell,

i(pjX)+

(
ppj −m2

j

)2

4ℜµνp
µ
j p

ν
j

+ T
µν
j XµXν + 
orre
tions o�-shell.

Here

T
µν
j =

(RµνRλρ −RµλRνρ) p
λ
j p

ρ
j

Rµνp
µ
j p

ν
j

,

l = (1, l), l =
X

|X| , X = Xs −Xd = (X0,X).

As is dis
ussed below, the 4-momenta pj in the two regimes represent rather di�erent

mathemati
al 
onstru
tions, whi
h have very di�erent physi
al meaning.



• It the on-shell UR regime, the 
omponents of pj are given by the series in powers

of the small dimensionless parameter

rj =
m2

j

2E2
ν

,

namely,

p0j = Eν

(
1−

∞∑

n=1

CE
n r

n
j

)
, |pj | = Eν

(
1−

∞∑

n=1

CP
n r

n
j

)
, pj = |pj |l, p2 = m2

j .

where

Eν =
(Y l)

ℜµν lµlν
, Y µ = ℜ̃µν

s qsν − ℜ̃µν
d qdν , ℜµν = ℜµν

s + ℜµν
d

[for any tensor A, Ã = gA−1g.℄

• It the o�-shell UR regime pj is not the e�e
tive neutrino 4-momentum, but only a

notation:

pj = (p0j ,p), p0j ≡ Ej =
√

|p|2 +m2
j ,

while the �intrinsi
� 4-momentum is

p = (p0,p), pµ = ℜµνYν ≈ qs ≈ −qd =⇒ p2 6= m2
j .

Moreover, there is no a straight 
onne
tion between the dire
tions of p and l.



Neutrino Virtuality

In the O�-shell regime the al-

lowed neutrino virtuality is de-

�ned by the 
ondition

∣∣p2 −m2
j

∣∣ . 2
√
Gj

(j = 1, 2, 3, . . .),

where Gj is generally a Lorentz

invariant fun
tion of the exter-

nal momenta.

For neutrinos from πµ2-de
ay

Gj =
(
σ2
πm

2
µ + σ2

µm
2
π

) ∣∣u⋆
µ

∣∣2.

So

∣∣p2 −m2
j

∣∣


an be large 
om-

paring to m2
j .
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The virtuality is not itself an observable quantity sin
e the virtual neutrinos 
ontribute to

〈〈|A|2〉〉 (the squared amplitude averaged over the unmeasured external momenta) exa
tly as

the normal on-shell parti
les. However 
ertain �footprints� of the virtuality must remain in

the 
orre
tions to the survival and transition probabilities. In parti
ular, the transitions �light

neutrinos ←→ heavy neutrinos should be strongly suppressed.
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The real s
ale of the e�e
t is not yet well understood. More studies are needed.
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NNLO relative correction to the

standard QM oscillation phase
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9 orders!

Does the asymptotic convergence fail here?

The fine structure is

very sensitive to the

  neutrino masses



Ma
ros
opi
 averaging for the on-shell 
ase

To obtain the observable quantities, the probability must be averaged/integrated over all the

unmeasurable or unused variables of in
oming/outgoing WP states.

Su
h a pro
edure 
an only be realized by taking into a

ount the 
onditions of a real experimental

environment. For these reasons and in this sense, further analysis is model-dependent.

A thought experiment:

Assume that the statisti
al distributions of the in
oming WPs a ∈ Is,d over the mean

momenta, spin proje
tions, and spa
e-time 
oordinates in the sour
e and dete
tor �devi
es�


an be des
ribed by the one-parti
le distribution fun
tions fa(pa, sa, xa). It is 
onvenient to

normalize ea
h fun
tion fa to the total number, Na(x
0
a), of the pa
kets a at a time x0a:

∑

sa

∫
dxadpa

(2π)3
fa(pa, sa, xa) = Na(x

0
a) (a ∈ Is,d).

For 
larity purposes, we (re)de�ne the terms �sour
e� and �dete
tor�:

S = supp
{xa; a∈Is}

∏

a

fa(pa, sa, xa), D = supp
{xa; a∈Id}

∏

a

fa(pa, sa, xa).

We'll use the same terms and notation S and D also for the 
orresponding devi
es.



Suppositions:

[1℄ S and D are �nite and mutually disjoint within the spa
e domain.

[2℄ E�e
tive spatial dimensions of S and D are small 
ompared to the mean distan
e between

them but very large 
ompared to the e�e
tive dimensions (∼ σ−1
κ

) of all WPs in S and D.

[3℄ The experiment measures only the momenta of the se
ondaries in D and (due to [2℄) the

ba
kground events 
aused by the se
ondaries falling into D from S 
an be negle
ted.

[4℄ The dete
tion e�
ien
y in D is 100%.

With these assumptions, the ma
ros
opi
ally averaged probability represents the total number,

dNαβ , of the events re
orded in D and 
onsisted of the se
ondaries b∈Fd having the mean

momenta between pb and pb + dpb:

〈〈|Aβα|2〉〉 ≡ dNαβ =
∑

spins

∫ ∏

a∈Is

dxadpafa(pa, sa, xa)

(2π)32EaVa

∫ ∏

b∈Fs

dxbdpb

(2π)32EbVb
Vs

×
∫ ∏

a∈Id

dxadpafa(pa, sa, xa)

(2π)32EaVa

∫ ∏

b∈Fd

dxb[dpb]

(2π)32EbVb
Vd

×
∫
dEν(2π)

4δs(pν − qs)|Ms|2(2π)4δd(pν + qd)|Md|2

× D

2
√
π(2π)3L2

∣∣∣
∑

j

V ∗
αjVβj e

−Ωj(T,L)−Θj

∣∣∣
2

.

(8)

⊲
∑

spins denotes the averaging/summation over the spin proje
tions of the in/out states.

⊲ Symbol [dpb] indi
ates that integration in variable pb is not performed, i.e.,

∫
[dpb] = dpb.



Under additional assumptions, the unwieldy expression (8) 
an be simpli�ed in a few steps.

Step 1: Multidimensional integration in WP positions.

Supposition 5: The distribution fun
tions fa(pa, sa, xa), as well as the fa
tors e−Ωj−Ω∗

i /L2

vary at large (ma
ros
opi
) s
ales.

The integrand

∏
κ
|ψκ (p

κ
, xκ − x)|2 in the integral representation of the overlap volumes (??) is

essentially di�erent from zero only if the 
lassi
al word lines of all pa
kets κ pass through a small

(though not ne
essarily mi
ros
opi
) vi
inity of the integration variable.

Supposition 6: The edge e�e
ts 
an be negle
ted (a harmless extension of supposition [2℄).

As a result, expression (8) is redu
ed to the following:

dNαβ =
∑

spins

∫
dx

∫
dy

∫
dPs

∫
dPd

∫
dEν

D
∣∣∣
∑

j V
∗
αjVβj e

−Ωj(T,L)−Θj

∣∣∣
2

16π7/2|y − x|2 , (9)

where T = y0 − x0, L = |y − x| and we have de�ned the di�erential forms

dPs=
∏

a∈Is

dpafa(pa, sa, x)

(2π)32Ea

∏

b∈Fs

dpb

(2π)32Eb
(2π)4δs(pν − qs)|Ms|2, (10a)

dPd=
∏

a∈Id

dpafa(pa, sa, y)

(2π)32Ea

∏

b∈Fd

[dpb]

(2π)32Eb
(2π)4δd(pν + qd)|Md|2. (10b)



Step 2: Integration in time variables.

Supposition 7: During the experiment, the distribution fun
tions fa in S and D vary slowly

enough with time so that they 
an be modelled by the �re
tangular ledges�

fa(pa, sa;x) = θ
(
x0 − x01

)
θ
(
x02 − x0

)
fa(pa, sa;x) for a∈Is,

fa(pa, sa; y) = θ
(
y0 − y01

)
θ
(
y02 − y0

)
fa(pa, sa;y) for a∈Id.

(11)

Supposition 8: The time intervals needed to swit
h on and swit
h o� the sour
e and dete
tor

are negligibly small in 
omparison with periods of stationarity τs = x02 − x01 and τd = y02 − y01 .

In 
ase of dete
tor, the step fun
tions in (11) 
an be thought as the �hardware� or �software�

trigger 
onditions. The periods of stationarity τs and τd 
an be astronomi
ally long, as it is for

the solar and atmospheri
 neutrino experiments (τs ≫ τd in these 
ases), or very short, like in the

experiments with short-pulsed a

elerator beams (when usually τs . τd).

Within the model (11), the only time-dependent fa
tor in the integrand of (9) is e−Ωj−Ω∗

i

. So

the problem is redu
ed to the (
omparatively) simple integral

∫ y0

2

y0

1

dy0
∫ x0

2

x0

1

dx0 e−Ωj(y
0−x0,L)−Ω∗

i (y
0−x0,L) =

√
π

2D
τd exp

(
iϕij −A

2
ij

)
Sij . (12)



In relation (12) we have adopted the following notation:

Sij =
exp

(
−B

2
ij

)

4τdD

2∑

l,l′=1

(−1)l+l′+1

Ierf

[
2D

(
x0l − y0l′ +

L

vij

)
− iBij

]
, (13)

Aij = (vj − vi)DL =
2πDL

EνLij
, Bij =

∆Eji

4D
=

πn

2DLij
, (14)

ϕij =
2πL

Lij
, Lij =

4πEν

∆m2
ij

,
1

vij
=

1

2

(
1

vi
+

1

vj

)
,

∆m2
ij = m2

i −m2
j , ∆Eij = Ei − Ej ,

Ierf(z) =

∫ z

0

dz′erf(z′) +
1√
π

= z erf(z) +
1√
π
e−z2 ,

For a more realisti
 des
ription of the beam pulse experiments, the model (11) 
ould be readily

extended by in
lusion of a series of re
tangular ledges followed by pauses during whi
h fa = 0.

Then substituting (12) into (9) we obtain:

dNαβ = τd
∑

spins

∫
dx

∫
dy

∫
dPs

∫
dPd

∫
dEν
Pαβ(Eν , |y − x|)
4(2π)3|y − x|2 , (15a)

≡ τd
VDVS

∫
dx

∫
dy

∫
dΦν

∫
dσνDPαβ(Eν , |y − x|). (15b)

The di�erential forms dPs,d in (15a) are are given by eq. (10) after substitution fa 7−→ fa.



Explanation of the fa
tors in eq. (15b).

⊲ VS and VD are the spatial volumes of the sour
e and dete
tor, respe
tively.

⊲ The di�erential form dΦν is de�ned in su
h a way that the integral

dx

VS

∫
dΦν

dEν
= dx

∑

spins∈S

∫
dPsEν

2(2π)3|y − x|2 (16)

is the �ux density of neutrinos in D, produ
ed through the pro
esses Is → F ′
sℓ

+
αν in S.

More pre
isely, it is the number of neutrinos appearing per unit time and unit neutrino energy in

an elementary volume dx around the point x ∈ S, travelling within the solid angle dΩν about the

�ow dire
tion l = (y − x)/|y − x| and 
rossing a unit area, pla
ed around the point y ∈ D and

normal to l.

⊲ The di�erential form dσνD is de�ned in su
h a way that

1

VD

∫
dydσνD =

∑

spins∈D

∫
dydPd

2Eν

(17)

represents the di�erential 
ross se
tion of the neutrino s
attering o� the dete
tor as a whole.

In the parti
ular (and the most basi
ally important) 
ase of neutrino s
attering in the rea
tion

νa→ F ′
dℓ

−
β , provided that the momentum distribution of the target s
atterers a is su�
iently

narrow, the di�erential form dσνD be
omes exa
tly the elementary di�erential 
ross se
tion of this

rea
tion multiplied by the total number of the parti
les a in D.



⊲ Now let us address the last sub-integral multiplier of (15b), given by

Pαβ(Eν , L) =
∑

ij

V ∗
αiVαjVβiV

∗
βjSij exp

(
iϕij −A

2
ij −Θij

)
, (18)

Θij = Θi +Θj , (19)

Θj =
m2

j

2D2

[
(n0 − n) +

1

2

(
m− n− n

2) rj +
(
n+

1

2

)(
m− n− n

2) r2j +O(r3j )
]
. (20)

Let's remind that the fun
tion n0 
oin
ides with n in the 
ase of exa
t energy-momentum


onservation in the verti
es of our diagram. Therefore in the vi
inity of the maximum of the

produ
t δ̃s(pν − qs)δ̃d(pν + qd) (that is at qs ≈ −qd ≈ pν), whi
h gives the main 
ontribution

into the event rate, one 
an negle
t the alternating quantity n0 − n in (20). Taking into

a

ount the properties of the fun
tion n one 
an also negle
t the O(r2j ) 
ontributions in (20).

In this approximation

Θj ≈
m4

jR
(
m− n− n2

)

4E2
ν

≈ m4
jR

(
m− n0 − n20

)

4E2
ν

=
m4

j

[
R00R − (Rl)2

]

4RE2
ν

≥ 0.

• The fa
tor (18) 
oin
ides with the QM expression for the neutrino �avor transition

probability,

P(QM)
αβ (Eν , L) =

∑

ij

VαiVβjV
∗
αjV

∗
βi exp (iϕij). (21)

provided that Sij = 1, Θij = 0, and Aij = 0. So it 
an be 
onsidered as a QFT re�nement of

the QM result.



BUT!

• A probabilisti
 interpretation of the fun
tion Pαβ 
an be only provisionally true, be
ause the

fa
tors Sij and Aij involve the fun
tions D, n, and m strongly dependent on the neutrino

energy Eν and external momenta p
κ

; all these (ex
ept for the momenta of se
ondaries in D)

are variables of integration in (15b).

As a result, the fa
tor Pαβ , as fun
tion of α and β, does not satisfy the unitarity relations

∑

α

P(QM)
αβ =

∑

β

P(QM)
αβ = 1, �

whi
h are a 
ommonpla
e in the QM theory of neutrino os
illations.

The point is that the domains and shapes of the fun
tions D, n, and m are essentially di�erent

for ea
h of the nine leptoni
 pairs (ℓα, ℓβ). These di�eren
es are governed by kinemati
s of the

subpro
esses in S and D (in parti
ular, their thresholds), that is, eventually, by the leptoni
 masses

(me, mµ, mτ ) and by the momentum spreads (σe, σµ, στ ) of the leptoni
 WPs, whi
h are not

ne
essarily equal to ea
h other, perhaps even within an order of magnitude.

So Pαβ(Eν , L) is not the �avor transition probability!

Having this in mind, we will 
all it probability fa
tor for short.



Two more drawba
ks.

• The probabilisti
 treatment of Pαβ is even more problemati


in real-life experiments, be
ause the dete
tor event rate (with

ℓβ appearan
e in our 
ase) is de�ned by many subpro
esses of

di�erent types in the sour
e and dete
tor.

E.g., in the astrophysi
al, atmospheri
 and a

elerator neutrino

experiments, the major pro
esses of neutrino produ
tion are

in-�ight de
ays of light mesons (πµ2, Kµ2, Kµ3, Ke3, et
.)

and muons, and neutrino intera
tions with a dete
tor medium


onsist of an in
oherent superposition of ex
lusive rea
tions of

many types, � from (quasi)elasti
 to deep-inelasti
.

• A �te
hni
al� drawba
k is the dependen
e of the fun
tion Sij

(whi
h will be referred to as de
oheren
e fa
tor) on the four

�instrumental� time parameters x01, x
0
2, y

0
1 , y

0
2 .

So far we have made no assumption 
on
erning a �syn
hronization� of the time windows

(x01, x
0
2) and (y01 , y

0
2). Thus, it is no wonder that the de
oheren
e fa
tor turns to be

vanishingly small in magnitude if these windows are not adjusted to a

ount that the

representative time of ultrarelativisti
 neutrino propagation from S to D is equal to the mean

distan
e, L, between S and D.

Before dis
ussing the role of the de
oheren
e fa
tor, we perform one more, and the last,

simpli�
ation of the formula for dNαβ .



Step 3: Spatial averaging.

s

L

Ws

W

O

dO

Source

Detector

LNW

LFW

We'll use again the requirement that the 
hara
teristi
 dimensions

of S and D are small 
ompared to L. Under 
ertain 
onditions,

this allows us to repla
e approximately

|y − x| 7−→ L =
1

2Ωs

∫

Ωs

dΩ
(
LF

Ω + LN
Ω

)
,

dΦν 7−→ dΦν , dσνD 7−→ d σνD.

The range of appli
ability of this approximation is in general mu
h

more limited than that of (15b), as a 
onsequen
e of additional re-

stri
tions impli
itly imposed on the distribution fun
tions fa, absolute

dimensions and geometry of S and D.

These issues are bit more 
ompli
ated then the 
onsidered above and

must be the subje
t of spe
ial attention in the neutrino os
illation

experiments.

Finally, we arrive at the very simple but rather rough expression:

dNαβ = τd

∫
dΦν

∫
dσνDPαβ(Eν , L). (22)

In parti
ular, it is not appli
able to the short base-line experiments.



Syn
hronized measurements.

Let us now return to the de
oheren
e

fa
tor, limiting ourselves to a 
onsider-

ation of �syn
hronized� measurements,

in whi
h

x01,2 = ∓τs
2
, y01,2 = L∓ τd

2
.

τ  /2s−τ  /2s 0 x 0

L+τ  /2dL−τ  /2d L y 0

≃T   L
−

− − −

With 
ertain te
hni
al simpli�
ations, the fa
tor (13) 
an be expressed through a real-valued

fun
tion S(t, t′, b) of three dimensionless variables, namely:

Sij = S (Dτs,Dτd,Bij),

2t′S(t, t′, b) = exp
(
−b2

)
Re

[

Ierf

(
t+ t′ + ib

)
− Ierf

(
t− t′ + ib

)]
.

Diagonal de
oheren
e fun
tion.

S(t, t′, 0) =
1

2t′
[

Ierf

(
t+ t′

)
− Ierf

(
t− t′

)]
≡ S0(t, t

′), (23)

This fun
tion 
orresponds to the noninterferen
e (neutrino mass independent) de
oheren
e

fa
tors Sii. The following inequalities 
an be proved:

0 < S0(t, t
′) < 1, S0(t, t

′) < t/t′ for t′ ≥ t, S0(t+ δt, t) > erf(δt) for δt > 0.



The strong dependen
e of the 
ommon suppression fa
tor S0(t, t
′) on its arguments at t . t′

provides a potential possibility of an experimental estimation of the fun
tion D (or, rather, of

its mean values within the phase spa
es), based on the measuring the 
ount rate

dRαβ = dNαβ/τd as a fun
tion of τd and τs (at �xed L) and 
omparing the data with the

results of Monte-Carlo simulations.

The optimal strategy of su
h an experiment should be a subje
t of a dedi
ated analysis.



For the important spe
ial 
ase, t′ = t (representative, in parti
ular, for the experiments with

a

elerator neutrino beams), we �nd

S0(t, t) = erf(2t)− 1− e−4t2

2
√
πt

≈





2t√
π

(
1− 2t2

3
+

8t4

15

)

for t≪ 1,

1− 1

2
√
πt

for t≫ 1.

(24)



Nondiagonal de
oheren
e fun
tion.

The de
oheren
e fun
tion S(t, t′, b) at b 6= 0 is mu
h more involved.

At very large t, the fun
tion S(t, t, b) be
omes nearly independent on t, slowly approa
hing the

asymptoti
 behavior S(t, t, b) ∼ exp(−b2) (t, t′ →∞).



S(t, t′, 0.1). S(t, t′, 0.2). S(t, t′, 0.3).

S(t, t′, 0.4). S(t, t′, 0.5). S(t, t′, 0.6).



S(t, t′, 0.7). S(t, t′, 0.8). S(t, t′, 0.9).

S(t, t′, 1.0). S(t, t′, 1.5). S(t, t′, 2.0).



S(t, t′, 3.0). S(t, t′, 4.0). S(t, t′, 5.0).

S(t, t′, 6.0). S(t, t′, 7.0). S(t, t′, 8.0).



S(t, t′, 9.0). S(t, t′, 10.0). S(t, t′, 15.0)/S0(t, t
′).

S(t, t′, 0.10)/S0(t, t
′),

S(t, t′, 0.50)/S0(t, t
′).

S(t, t′, 0.75)/S0(t, t
′),

S(t, t′, 1.00)/S0(t, t
′).

S(t, t′, 1.50)/S0(t, t
′),

S(t, t′, 4.00)/S0(t, t
′).



Flavor transitions in the asymptoti
 regime.

In the asymptoti
 regime,

S(t, t′, b) ∼ exp(−b2) (t, t′ →∞).

the probability fa
tor (18) takes on the form already known from the literature,

a

Pαβ(Eν , L) =
∑

ij

V ∗
αiVαjVβiV

∗
βj exp

(
iϕij −A

2
ij −B

2
ij −Θij

)
, (25)

but with the essential di�eren
e that the fa
tors Aij , Bij and Θij do depend (through the

fun
tions D, n, and m) on the neutrino energy and momenta of the external WPs.

This dependen
e drasti
ally a�e
ts the magnitude and shape of these fa
tors if at least some of the

WPs have relativisti
 momenta (that is always the 
ase in the 
ontemporary neutrino os
illation

experiments). For su�
iently small and/or hierar
hi
ally di�erent momentum spreads σκ , the

fun
tions Aij and Bij may vary in many orders of magnitude through their multidimensional

domain.

a

See, e.g., C. Giunti C and C. W. Kim, Fundamentals of Neutrino Physi
s and Astrophysi
s (Oxford

University Press In
., New York, 2007); M. Beuthe, Os
illations of neutrinos and mesons in quantum

�eld theory, Phys. Rept. 375 (2003) 105 (arXiv:hep-ph/0109119); M. Beuthe, Towards a unique formula

for neutrino os
illations in va
uum, Phys. Rev. D 66 (2002) 013003 (arXiv:hep-ph/0202068).



Major properties of the transition �probability�.

• The fa
tors exp
(
−A

2
ij

)

(with i6=j) suppress the interferen
e terms at the distan
es

ex
eeding the �
oheren
e length�

Lcoh
ij =

1

∆vijD
≫ |Lij | (∆vij = |vj − vi|),

when the νWPs ψi
Xd

(pi, Xs −Xd) and ψ
j
Xd

(pj , Xs −Xd) are strongly separated in spa
e

and do not interfere anymore. Clearly Lcoh
ij →∞ in the plane-wave limit.

• The suppression fa
tors exp
(
−B

2
ij

)

(i6=j) work in the opposite situation, when the

external pa
kets in S or D (or in both S and D) are strongly delo
alized

The gross dimension of the the neutrino produ
tion and absorption regions in S and D is of

the order of 1/D. The interferen
e terms vanish if this s
ale is large 
ompared to the

�interferen
e length�

Lint
ij =

1

4∆Eij
=

2Lij

πn
.

In other words, the QFT approa
h predi
ts vanishing of neutrino os
illations in the plane-wave

limit. In this limit, the �avor transition probability does not depend on L, Eν , and neutrino

masses mi and be
omes

PPWL

αβ =
∑

i

|Vαi|2|Vβi|2 ≤ 1.

Thereby, a nontrivial interferen
e of the diagrams with the intermediate neutrinos of di�erent

masses is only possible if D 6= 0.



• Our detailed analysis of the generi
 subpro
esses 1→ 2, 1→ 3, and 2→ 2 shows that

D 6= 0 if in both verti
es of the ma
rodiagram there are at least two intera
ting WPs κ (no

matter in or out) with σκ 6= 0.

• The same requirement unavoidably leads to the vanishing of the non-diagonal terms, when

the mean distan
e between S and D be
omes large enough in 
omparison with the 
oheren
e

lengths Lcoh
ij .

• As a result, the range of appli
ability of the standard QM formula for the neutrino

os
illations probability is limited by rather restri
tive 
onditions,

〈(
2πDL

EνLij

)2
〉
≪ 1,

〈(
πn

2DLij

)2
〉
≪ 1, and 〈|Θij |〉 ≪ 1.

The angle bra
kets symbolize an averaging over the phase subspa
e of the pro
ess (3) whi
h

provides the main 
ontribution into the measured 
ount rate.

The obtained 
onditions were obtained under a number of assumptions and simpli�
ations, whi
h are

not ne
essarily adequate to fully represent the real-life experimental 
onditions. Our 
onsideration

suggests that in the analysis and interpretation of real data one should take into a

ount the

operating times of the sour
e and dete
tor, their geometry and dimensions, expli
it form of the

distribution fun
tions of in-pa
kets, and other te
hni
al details.



Intermediary 
on
lusions on the QFT approa
h.

• The standard QM ν-os
illation formula has rather limited range of appli
ability.

• The QFT modi�
ations drasti
ally depend upon:

⊲ momentum spreads of the external �in� and �out�

wave pa
kets (determined by the environment

and �prehistory� of their 
reation).

⊲ rea
tion types in the neutrino produ
tion and

absorption regions [�sour
e� and �dete
tor�, re-

spe
tively℄ and phase-spa
e domains of these re-

a
tions;

⊲ time interval of steady-state operation of the

sour
e �ma
hine � and dete
tor exposure time;

⊲ dimensions of the sour
e and dete
tor and dis-

tan
e between them.

• Essentially all QFT e�e
ts are de
oherent and thus lead to a �smoothing�, distortion or

vanishing of the interferen
e (os
illating) terms and to a general suppression of the

neutrino event rate in the dete
tor. This suppression is potentially measurable in the

dedi
ate experiments.

The predi
ted e�e
ts are usually small. But �small� does not mean �uninteresting�.

Modern physi
s �ourishes due mainly to dis
overing very small e�e
ts.


