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The aims and concepts of the field-
theoretical approach.

The main purposes:

To define the domain of applicability of the standard
quantum-mechanical (QM) theory of vacuum neutrino
oscillations and obtain the QFT corrections to it.

The basic concepts:

e The “v-oscillation” phenomenon in QFT is noth-
ing else than a result of interference of the macro-
scopic Feynman diagrams perturbatively describing
the lepton number violating processes with the mas-
sive neutrino fields as internal lines (propagators).

e The external lines of the macrodiagrams are wave
packets rather than plane waves (therefore the stan-
dard S matrix approach should be revised).

e The external wave packet states are the covari-
ant superpositions of the standard one-particle Fock
states, satisfying a correspondence principle.

References: D. V. Naumov & VN, J. Phys. G 37 (2010) 105014 [arXiv:1008.0306 [hep-ph]]; Russ.
Phys. J. 53 (2010) 549-574; arXiv:1110.0989 [hep-ph].
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Angels & hippopotami

According to the current theoretical understanding,
the neutrino fields/states of definite flavor are super-
positions of the fields/states with definite, generally
different masses [and vice versa]:

Vo = Z Vaili for neutrino fields,

(2
Vo) = Z Vailvi)  for neutrino states;
i

a=e,uT7, =123, ...

Here V,,; are the elements of the Pontecorvo-Maki-
Nakagawa-Sakata neutrino vacuum mixing matrix V.

This concept leads to the possibility of transitions
between different flavor neutrinos, v, «— vg,
phenomenon known as neutrino flavor oscillations.

We'll not appeal to the sweet but a bit ephemeral
cherubs (neutrino flavor eigenfields/eigenstates) and
will only deal with the more prosaic hippos (neutrino
mass eigenfields/eigenstates).




Some challenges against the QM approach

Equal-momentum assumption

Massive neutrinos v; have, by assumption, equal momenta: p; = p, (i = 1,2, 3).
This key assumption seems to be unphysical being reference-frame (RF) dependent;

if it is true in a certain RF then it is false in another RF moving with the velocity v:

I'v(vpy)
E/:Fsz_ v ;: v FV —_Ez
I A e A
() [assuming, as necessary for oscillations, that m; # m] ()

p; —p; = (E;— E))v=1I,(E; — E;)v #0.

Treating the Lorentz transformation as active, we conclude that the EM assumption
cannot be applied to the non-monoenergetic v beams (the case in real-life experiments).

« A similar objection exists against the alternative equal-energy assumption; in that case

E;—Ej=I,(p; —p:)v#0, |pi—pj|l= \/\pi —p;|* + I3 [(p: — p;) v]* #0.
« Can the EM (or EE) assumption be at least a good approximation? Alas, no, it cannot,

Let v,s arise from m,2 decays. If the pion beam has a wide momentum spectrum — from
subrelativistic to ultrarelativistic (as it is, e.g., for cosmic-ray particles), the EM (or EE) condition
cannot be valid even approximately within the whole spectral range of the pion neutrinos.



Light-ray approximation

The propagation time T is, by assumption, equal to the distance L traveled by the
neutrino between production and detection points. But, if the massive neutrino
components have the same momentum p,, their velocities are in fact different:

2
A\ z > — |V¢—Vj|% ;Z.
V p%—l—mi 287

One may naively expect that during the time 7" the neutrino v; travels the distance
L; = |v;|T; therefore, there must be a spread in distances of each neutrino pair

SLo = Li— L, e DM 1 bere L— ol =T

1 — L4 Jg~ QEI% y whnere =cCcl = 1.
Am3; B, L Lij 0L
Am3s 1 GeV 2Rq 0.1Rg ~ 107" cm
Am3s 1 TeV Ra ~ 100 kps 100Rg ~ 107* cm
Am3, 1 MeV 1 AU 0.25Rq ~ 107% cm

The values of JL;; listed in the Table seem to be fantastically small. But

Are they sufficiently small to preserve the coherence in any circumstance?

In other words:

What is the natural scale of the distances and times?




®
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Can light neutrinos oscillate into heavy ones or vise versa?
[Can active neutrinos oscillate into sterile ones or vise versa?]

The naive QM answer is Yes. Why not? If, at least, both v, (light) and v, (heavy) are
ultrarelativistic [ |p.| > max(mi, m2, ms,..., M), | one obtains the same formula for the
oscillation probability Z,s(L), since the QM formalism has no any limitation to the
neutrino mass hierarchy.

Possibility of such transitions is a basis for many speculations in astrophysics and cosmology.
But! Assume again that the neutrino source is 7,2 decay and M > m, . Then the
transition v, — vs in the pion rest frame is forbidden by the energy conservation.

4

There must be some limitations & flaws in the QM formula. What are they?

Do CvB neutrinos oscillate?

The lightest (standard) relic neutrinos are most probably relativistic or perhaps even
ultrarelativistic, while the heaviest ones can be subrelativistic. The QM approach is unable
to work with such a set of v states.

Does the motion of the neutrino source affect the transition probabilities?

To answer these and many similar questions

One has to unload the UR approximation & develop a covariant formalism.




In the QFT approach (on-shell regime):

the effective (most probable) energies and momenta

of virtual v;s are found to be functions of the masses, most probable momenta and momentum
spreads of all particles (wave packets) involved into the neutrino production/detection processes.

In particular, in the two limiting cases — ultrarelativistic (UR) and nonrelativistic (NR):

Ultrarelativistic case

(’qg,d’ ~ |as,a| > m;)

Nonrelativistic case

(‘qg,d‘ ~m; > |gs,dl)
mo_ 1 gfe,uO
& = m;# L ° (mz

7\

7\

1,

1
Ipi|= Ev [1—(114—1)7“1-— (m—|—n—|— 5) r?—k...],

( F,=F, [l—nm—mr?—k..

1
vizl—m—(Qn—l— ) 3+<1, J
\
: miv? n P

Ei=m; +

3
14+ 26, 4...),
<+4 * )

1
|p¢|: m;v; 1—|—§5¢—|—... ,
.~ Qil <1 pi pf
\ VU~ 1—|—QO 9 d d
’ q,= D) - B} |
0 0 2
By =qs = —qq, Ti= 2E2
~q710) k
a?) + R (mi +ag) — REEqS + Ry in] |6}l < 1 (NR).




Definite momentum assumption

In the naive QM approach, the assumed definite momenta of neutrinos (both v, and v;)
imply that the spatial coordinates of neutrino production (X) and detection (X,) are
fully uncertain (Heisenberg's principle). '

The distance L = | X4 — X;| is uncertain too, that makes the standard QM formula for
the flavor transition probabilities to be formally speaking senseless.

In the correct theory, the neutrino momentum uncertainty J|p. | must be at least of the
order of min(1/Ds,1/Dg), where Dg and D are the characteristic dimensions (along the
neutrino beam) of the source and detector “machines”.

4
The neutrino states must be some wave packets (WP) [though having very small spreads]
dependent, in general, on the quantum states of the particles [or, more exactly, also WPs]
which participate in the production and detection processes.

In the on-shell QFT regime: the effective WPs of virtual UR v;s are found to be

D2
p§) = exp {ﬂ(pjxs,d> = 5 (0,07 = m3X?] } X = Xq — X,
174
where p; = (E;,p;) and X, 4 are the 4-vectors which characterize the space-time location of
the v production and detection processes, while 53- are certain (in general, complex-valued)
functions of the masses, mean momenta and momentum spreads of all particles involved into
these processes. [5j/E,, and thereby 1); are Lorentz invariants.]




QFT approach by the example of the reaction 71®&n — u®rp




The rare reactions 7@ n — ut® 7 p+ ... were (indirectly) detected by several un-
derground experiments (Kamiokande, IMB, Super-Kamiokande) with atmospheric neu-
trinos. In 2010, OPERA experiment (INFN, LNGS) with the CNGS neutrino beam

announced the direct observation of the first 7= candidate event.
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V. are the elements of the |
Pontecorvo-Maki-Nakagawa |

' -Sakata (PMNS) neutrino
vacuum mixing matrix V.
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In the standard S matrix pertur-
bation theory the in & out states
are one-particle Fock states:

p..)=42E, a.,(p.)|0)

2 2
Ep:p +m°, »x=T,U,n,...

(a|k) = (2n)2E38 (k—q)

N |p,)  —— — ) [p,)



In the standard S matrix pertur-
bation theory the in & out states

Feynman graphs are one-particle Fock states:

with Fock legs
cannot reproduce [l p..)=+2E, a.(p,)|0)

the rv-oscillation L | 2 2
| E — + — ‘9 o o o
phenomenon. p \/[)7, »x=T,U,n,

I E— (q|k)=(2n)’2E5 (k—q)

'
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In our approach the in and out
states are covariant wave packets:

|p%7x%>: 2Ep/Aj(p,g)x)|0>

K (k. p)e’t "

A%““””‘J 2eny JBE,

PWL

| AL(p,x) —al(p) = <p,x|p,x> 2mV,

0[Py, ——



In our approach the in and out |}-

, T—— .~ states are covariant wave packets:
For 81mp11c1ty we

omit the spin and | | IP..,x,.)=42E, A4;(p..,x)]0)
other discrete 7 |
variables in the - A(p,x)= j

dk gk, ple
| WP states 2(275) \/ E
—— = Bs e .J | PWL

A (p,x)—a, (p) = <p,x | p,x) =2mV,




Source vertex

W (k)
T |p7r7x7r> N - |p,u7xu>

Interaction region

WP can be roughly thought
' as small interpenetrative
 cloudlets which are, however,
.~ much larger than the micro-

scopic interaction regions in
| the source/detector vertices.

Interaction region

W (k')
n |pn,gjn> m— — ) |pp7[[jp> n

Detector vertex




™ P ,)

Interaction region

Interaction region

N

Source vertex

W (k)

' Unlucky configurations of the |
| world tubes of the WPs are OV ECCHES!
2 (¢ suppressed by the geometric |
| factors exp(-Gs,d) dependent |
of the in & out momenta and |
| space-time coordinates.

| —————_—————— —::E ——— & —:_—*_—";F——TJ

- 7 [pnz)

W (k') ‘ —

NP,y T,) e——

Detector vertex P



™ P ,)

Interaction region

Interaction region

N

Source vertex

W (k)

Lucky configurations of
the world tubes are not

v ( | suppressed, providing
possibility for interaction
of the WPs.

| —————_—————— —::E ——— & —:_—*_—";F——TJ

- 7 [pnz)

W (k")

NP,y T,) e——

Detector vertex




Source vertex Micro- or small U
macroscopic

. W (k) .
™ P y) ’ — 1 [pt)
V/Li ‘f \
/ Overlap
Interaction region region
(microscopic)
v (q ) Large macroscopic distance b
——  (up to astronomical) e
Interaction region
(microscopic)
\\ Micro-
- scopic
V’TZ. -7 |p7'7x7'> “: T
W (k') T
n |pn,gjn> m— — ) |pp7xp> /

Detector vertex Interaction region Y



Source vertex point X, 0

Tt |p7r7x7r> =¥ : : 7
/ T o“_- e __"—o- KD B N “ OverlaP
Interaction region The 1mpact points XS and Xd | region
are the 4-vectors defined as |'-

X, =(+1,) Gn +75) |

>N

X, = (T +7, +T, )‘1 (T,qxn +7,x,+ Trxr) |]

0 -1 |
x%|_>x"/:+6%p%(p%) :>Xs,d|_>Xs,d ig

Interaction region

\ | _ _ _ _ D Ipact point X ;

Vs - 7 |ppr) [
W (k') N
n o\p,,T, ) o — — D |P,,%
| ! n> Detector vertex | b p> / p

Overlap region

|



Compendium

In the covariant WP approach there are several space-time scales:

d d : . : : . : _
e 77°° and r}"" — microscopic interaction time and radius defined by the Lagrangian.
s7d s, . . . . . .
e 7," and 75" — microscopic or small macroscopic dimensions of the overlap space-time

regions of the interacting in and out packets in the source and detector vertices, defined
by the effective dimensions of the packets.

The suppression of the “unlucky” configurations of world tubes of the external packets
is governed by the geometric factor in the amplitude:

exp [— (&s + Ga)l,

where G 4 are the positive Lorentz and translation invariant functions of {p..} and
{z..}. In the simplest one-parameter model of WP (relativistic Gaussian packet)

G.a=)» oL|bL]", x€8,D,

where o,. are the momentum speeds of the packet s and b}, is the classical impact
vector in the rest frame of the packet i relative to the corresponding impact point.

o T'=X)—XYand L =|X,; — X,| — large macroscopic neutrino time of flight and way
between the impact points X and Xj.

For light neutrinos, the impact points lie very close to the light cone 7% = L~.

e In usual circumstance (terrestrial experiments) 7% < 75 < T and 5 < r5% < L.



Feynman rules for multipeds

)

We will deal with the generic connected diagrams. > —— e

' : /X =8
e The legs correspond to asymptotically free incom- I : C : F,
ing (“in”) and outgoing (“out”) WPs in the coor-
dinate representation. Here and below: I (F%)
is the set of in (out) packets in the block X
(“source”), I (Fy) is the set of in (out) packets
in the block X (“detector”).

|
&

e The internal line denotes the causal Green's e
function of the neutrino mass eigenfield v; [d{_s)_Xd_;_}Fd
(i =1,2,3,...). The blocks X, and X, are as- ——

sumed to be macroscopically separated.

e For narrow enough WPs, the Feynman rules for the legs are to be modified in a trivial way:

O (y)lp,s) — (0¥ (y)|p,s,z) ~ e P us(p)y(p,z — ), (1)

where ¥(y) is the relevant free field operator [in Eq. (1), the spin- fermion field is used
as an example] and ¢ (p, x) is the Lorentz-invariant function,

0p.2) = [ G ¢ 6(k,p) = ¥(0,2.),

satisfying the Klein-Gordon equation, (. — m?)(p,z) = 0. [Therefore it is a relativistic
wave packet in terms of conventional (axiomatic) scattering theory.]



For spinor field, the approximation (1) is valid under the following condition

iVy Iny(p,z —y) + p| < 2Fp.

It is, in fact, one the basic (most limiting) approximations in the whole formalism.
The approximate relations analogous to (1) take place for the free fields of any spin,
providing us with the modified Feynman-rule factors for the external lines of any diagram.
In particular, the relation (1) is exact for the scalar and pseudoscalar fields @(x):

(012(y)|p,s = 0,2) = e~ " Y(p,x —y)

e As a result for each external line, the standard (plain-wave) Feynman factor must
be multiplied by

( )

e_ip“(%_y)wa (Pa,Ta —y) for a € Iy
or

GHPZ’(%_”%@Z (pp, xp —y) for be FsdFy,

. 7

where each function v, (p,.,y) (5 = a, b) is specified by the mass m,, and the set
of momentum spreads o ,, = {01,.,02,,...}.

Generally the set o, forms a tensor with respect to Lorentz transformations. But to
simplify matters, below we'll only discuss a model with one scalar spread parameter o...

e The internal lines and loops in the diagram remain unchanged.



Relativistic Gaussian packets (RGP)

In further consideration we will use a simple model of the QFT WP state — relativistic
Gaussian packet (RGP), in which the form-factor function ¢(k, p) is of the form

B 2m> ExEp —Kp\ det
0p) = e exp (DRI ) & (i), @

where K7 is the modified Bessel function of the 3rd kind of order 1.

Ki(z) = z/ dte "' /12 — 1 (\ arg z| < g) :
1

One may easily check that the function (2) has the correct plane-wave limit and satisfies the

normalization conditions. In what follows we assume [ 0 < m? | [invariant condition of the

tightness]. Then the function (2) can be rewritten as the asymptotic expansion in o? /m?:

dc(k,p) = QZZ/QTexp [M] {1+ 3" o ("—4)}

o 402 4m? m4

In the nonrelativistic case, (|k| + |p|)* < 4m?, and only in this case this form factor coincides,
up to a normalization factor, with the widely used (noncovariant) Gaussian distribution:

e

k —
pc(k — p) oc exp { 152



Exact wavefunction ¢ (p,z) for RGP

K1(¢m? /202 def
Y(p,x) = Cé(c(mgj%gi Ya(p, ), o
¢ = \/1 — @ (0222 4 i(px)]. ;zg

Nondiffluent regime, contracted RGP 0155 -
Under the following N&S conditions Z; %

o’ () < m?/o?, x.|P <« m?/o’, zj% h
(px)® < m*/o*, (pz)® —m’z®> < m®/c* o 0 o2 M;L

space

[two pairs of the inequalities are equivalent] ocudm
RGP is stable in its rest frame (p* = 0): (time) 3

Ya(0, %) = exp (imxg — szi). 3D plot of [g(0,z4)| vs. 02z /m and o?z3 /m,

assuming x4 = (0,0,23) and o = 0.1m.
In the lab. frame it has the following form:

Ya(p, ) = exp {i(pz) — (¢/m)* [(pz)* — m*2”] }.




Table: Maximum permissible values of 0 (0 max = VmI', 0 < omax),
the ratios I'/omax = \/I'/m, and the minimum permissible effec-

tive dimensions d ™" ~ 1.55/+/mI in the CRGP approximation (con-
tracted RGP) for the particles most relevant to neutrino production.

Particle  omax (V) ['/omax d™™ (cm)
e 1.78 x 107+ 1.68 x 107° 1.72 x 10~*
T+ 2.01 x 10° 1.13 x 1076 1.53 x 1078
7t 1.88 1.35 x 1078 1.63 x 107° The maximum permissible
70 3.25 x 10* 2.41 x 1074 0.94 x 107°  deviation of the mean mass
K* 5.12 1.04 x 1078 5.99 x 107°  of CRGP from the field mass,
K32 6.05 x 10* 1.22 x 107 507 x 1077 §m =m — m, is equal to
K? 2.53 5.08 x 107 1.21 x 107° )
DE  1.09 x 10 5.82 x 1077 2.82 x 1078 g A STmex _qsp
D° 1.73 x 10° 9.28 x 1077 1.77 x 1078 2m
DF 1.61 x 10° 8.18 x 107”7 1.91 x 10™8 So, the correction to the field
B* 1.46 x 10° 2.76 x 1077 2.11 x 10~° mass of the short-lived reso-
B’ 1.51 x 10° 2.86 x 107" 2.03x107°  jances can be essential, but
B; 1"15 X 10_35 2.89 X 10__174 1.98 x 107 for the long-lived particles we
A 25?28Xx11()01 %4;.87142 1100—7 5.811%1?0—7 can (and we must) to neglect
AF 274 % 10° 1.87 x 10~° 112 x 10-8  he welghting effect.




Calculation of a macroscopic amplitude

As a practically important (and very gen- hadrons had;i“*“ \
eral) example, we consider the charged- ]9{ - ( X, ) - }F,
curren:cr induce_cl productic?n of charged lep- '\ 7 ~QCD 5
tons £, and £ (e, u,7) in the process \ s
g 1174

L@l Fl+ 65 @ Fy+0;, (3) — 05 )
We assume for definiteness that all the T
external substates I, Iy, F., and F}
consist exclusively of (asymptotically free) ( 'y

. . R e .
hadronic WPs. Consequently, if a # 3, the 15,4 = Pin™ Pout J
process (3) violates the lepton numbers L,
and Lg that is only possible via exchange of
massive neutrinos (no matter whether they e R
are Dirac or Majorana particles). /q’ ls )

7 4y
In the lowest nonvanishing (4-th) order in / W
electroweak coupling, the process (3) is de- ! ¢/ g __QCD t Fy
. . I

scrlbed-by the sum of the diagrams shown 7 —— ¥, - 7
in the figure. d - 1\ %) - d |

. . hadrons hadrons
The impact points X and X4 are macro-

scopically separated and all asymptotic con- A macroscopic Feynman diagram describing the
ditions are assumed to be fulfilled. flavor-violating process (3) with v; exchange.



The shortest possible sketch of the calculation

1. Quark-lepton blocks. We use the Standard Model (SM) phenomenologically extended by
inclusion of a neutrino mass term. The quark-lepton blocks are described by the Lagrangian

Lw (@) = =5 5= @)W () + jo (@)W (@) + Hel
where g is the SU(2) coupling constant, j, and j, are the weak charged currents:
i) = Vaivi()0Ma(z),  jy(x) =) Veu q(x)0"d (),  [0" =~4"(1—75)].
i aq’

Here Vi (o =e,p, 74 =1,2,3) and V, (¢ = u, ¢, t; ¢’ = d,s,b) are the elements of the
neutrino and quark mixing matrices (V' and V', respectively).

The normalized amplitude is given by the 4th order of the perturbation theory in g:

Ago= (out|S|in) ((in|in) <011t|0ut>)_1/2

B ) ' rLo i (o .
=V (2\/5) (Fs@Fd|T/ dada’dydy’ : jo(x)W () <2 jo (YW (') :

<G W () Gy YW () : Swl L@ la). (4)
The normalization factor A in the CRGP approximation is given by

N? = (in|in) (out|out) = I] 2F..V..(p,,).

%els@ld@Fs@Fd



2. Hadronic blocks. The strong and (possibly) electromagnetic interactions responsible for
nonperturbative processes of fragmentation and hadronization are described by the hadronic
(QCD) interaction Lagrangian Ly, (z) and the corresponding part of the full S-matrix is

Sk = exp [i/dzﬁh(z)].
The following factorization theorem can be proved
(FLFIT [: j4(2) : Sn: 3" () :| |1L@1a) = 72 (05) 77 (bD)

X [ [T e %" Ya(py wa — x)} [ [T e vi(py, xe — 93)}

acls beF!
x [ | | R y)} [ 11 e™" s Dy, 26 — y)]

Here Js(ps) and Ja(pp) are the c-number hadronic currents in which the strong interactions
are taken into account nonperturbatively, and ps and pp denote the sets of the momentum
and spin variables of the hadronic states.

The proof is based on the assumed narrowness of the WPs in the momentum space, macroscopic
remoteness of the interaction regions in the source and detector vertices, and the consideration of
translation invariance.

The explicit form of the hadronic currents 75 and 74 is not needed for our purposes.



By applying the new Feynman rules, factorization theorem, and other (both the standard QFT
and speculative) tricks the amplitude (4) can be rewritten in the following way:

4 -/ /
Ao = e S Vi T3 0P O LY ([P 2.) Ol TV )
J
! d ! : /
GL." ({p,.. zx}) = (273)4 Va(q)AY (¢ — ) A7 ()AL (¢ + pa)Vs(q). (6)

Here V,(q) and V4(q) are the overlap integrals,

Vsa(g) = /dxej:iqas [ H e—ipaxawa (Pa, Ta — x)] [ H eipbxbwg (P, To — 7) },

a€lg beFy
= (27T)4gs,d (qFqs,a) exp [—6Cs,a £ © (¢FGs,a) - Xs,d]

[the last equality is written in CRGP approximation]; 7, 4 are the hadronic currents; A7 and
A}, are the propagators of, respectively, the massive neutrino v; and I boson:
1 . cj + m;

e ) , etC.
g—mj+1i0 g% —m?+i0

A’ (q)

v — kyky /m?
The bare W boson propagator has the form A,(Lb,/)(k) = —1 In MQ /mW
k2 —m7, + 10

form of A, is not used below. So the latter can be thought of as the exact renormalized propagator.

. However, the explicit

The main problem is in calculation of the integral (6). Depending of the calculation method
and corresponding assumptions one obtains several regimes in the behaviour of the amplitude.
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n=shell regime
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v, are virtual particles
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v, are virtual particles
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n=shell regime

v; are real particles

— E,[1-nm? /(2E%) + ... ]

= E,[1-(n+1)m? /(2E2) + ... ]




The “on-shell regime” does not
GN—O.OOIeV,O'u—O.OOICV

work for the accelerator neutrino
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But (very preliminary conclusion!)

for the experiments with reactor & geophysical U.s the situation seems to be quite opposite.



Microscopic probability

In both on-shell and off-shell regimes the factorized and squared amplitude |Agz,|* for
the standard light neutrinos can finally be represented in the following form:

e N
‘A ‘2 _ (27T>458 (p — QS>VS (27T>45d<p + Qd>vd
Ba H%ES 2F..V,, erD 2F..V,,
x | My My + MM (7)
2
XN ‘ Z V[gj ‘
\ Y,

Here M;,Ed are the matrix elements of the production and detection of the left/right
polarized neutrinos in the corresponding subprocesses:

2
M = S (p) T By (p + pa)O0(pa)  [ME of L — FJ + €7 + vs].

S

2
ME = %ﬂ(pB)OVAVM(p —ps) T us(p)  [ME of vy + Iy — Fj+ €3],

Clearly for usual reactions the contribution with A" M in (7) and neutrino masses in
the terms M M ™ can safely be neglected. In other words, neutrinos in the matrix
elements M, and M, ™ can be treated as real massless neutrinos with p? = 0.



Other common for on-shell and off-shell regimes ingredients in (7) are:

e I, = ./P, and V,, are, respectively, the mean energies and (small) effective
volumes of the packets .

e 054 are the “smeared” § functions — analogous (but not identical) to the functions
ds.4 involved into the amplitude.

Responsible for the approximate conservation of the energy and momentum.

1~
exp | —=RIMK, K,
dx , L v 275
Ssa(K) = | Gz oxp (e = gRegmay | = —— o o=

e V, 4 are the effective 4D overlap volumes of the external packets in the source and
detector,

2 exp (—26,.4)
Vs’d:/dcv H |¢% (p%7$%—$)|2: ) )
»eS,D 4\/ PRS,CZ

Responsible for the “genetic selection” between the lucky and unlucky configuration
of the world tubes of the wave packets.



The distinction between the two regimes is quite essential:

f R | N
X (1 4 corrections)  [very slowly depend on p;] on-shell,
MY et n |
7 (1 + corrections) [very slowly depend on X | off-shell,
\ %w/pjpj

’ X)2 — m2X?
i(p; X)+ ( %) — | -+ corrections on-shell,
;ijpj
i(p; X )+ =— + %" X, X, + corrections off-shell.
L \ AN D; 1 )
H

ere B <

ThV (R Ry %M%Vp)pjpj

J R |

X
l:(171>, 12@’ X:XS—Xd:(Xo,X>.

As is discussed below, the 4-momenta p; in the two regimes represent rather different
mathematical constructions, which have very different physical meaning.



o It the on-shell UR regime, the components of p; are given by the series in powers
of the small dimensionless parameter

m2
MYy
EAYor S
namely,
zﬁzfﬁ<1_§:Cf@>» mﬂzfﬁ<1_§jcf@>>1%=ﬂm“»lﬂ”@
n=1 n=1
where
(Y1) o R
E]/ = N YM — %MV sV %MV V) %MV - %MV %MV
R, 1417 s v ™ T s

[for any tensor A, A= gA~1g]
e It the off-shell UR regime p; is not the effective neutrino 4-momentum, but only a
notation:

0 0 _
mﬂmm,m:&sz+@,
while the “intrinsic’ 4-momentum is
p=(po,p), p'=R"Y, =g ~-qu = p'#m]

Moreover, there is no a straight connection between the directions of p and 1.



Neutrino Virtuality
max
In the Off-shell regime the al-

lowed neutrino virtuality is de-
fined by the condition

p* —mj| $2V/G;
(1=1,2,3,...),
where G; is generally a Lorentz

invariant function of the exter-
nal momenta.

For neutrinos from 7,2-decay

G: — (o2m> 2 2\ [ %2
i = (ommy + opmz) [ug|”.

So }p2 — m?} can be large com- 107

o, (eV)

- 2
paring to m;.

The virtuality is not itself an observable quantity since the virtual neutrinos contribute to
((|A]*)) (the squared amplitude averaged over the unmeasured external momenta) exactly as
the normal on-shell particles. However certain “footprints” of the virtuality must remain in
the corrections to the survival and transition probabilities. In particular, the transitions “light

neutrinos <— heavy neutrinos should be strongly suppressed.




An effect of the neutrino virtuality
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The real scale of the effect is not yet well understood. More studies are needed.
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Macroscopic averaging for the on-shell case

To obtain the observable quantities, the probability must be averaged/integrated over all the
unmeasurable or unused variables of incoming/outgoing WP states.

Such a procedure can only be realized by taking into account the conditions of a real experimental

environment. For these reasons and in this sense, further analysis is model-dependent.

A thought experiment:

Assume that the statistical distributions of the incoming WPs a € I 4 over the mean
momenta, spin projections, and space-time coordinates in the source and detector “devices”
can be described by the one-particle distribution functions f,(p,, Sa, ). It is convenient to
normalize each function f, to the total number, N, (z)), of the packets a at a time z3:

Z/%fa(pa75a7xa) :Na(fﬁg) (a’el‘s’d)'

For clarity purposes, we (re)define the terms “source” and “detector”:

&= SUPP o, aers) Hfa(pa,sa,ilfa), b= SUPPro,: aery} Hfa(pa,sa,ilfa).

We'll use the same terms and notation S and D also for the corresponding devices.



Suppositions:

[1] S and D are finite and mutually disjoint within the space domain.

[2] Effective spatial dimensions of S and D are small compared to the mean distance between
them but very large compared to the effective dimensions (~ o,') of all WPs in S and D.

[3] The experiment measures only the momenta of the secondaries in D and (due to [2]) the
background events caused by the secondaries falling into D from S can be neglected.

[4] The detection efficiency in D is 100%.
With these assumptions, the macroscopically averaged probability represents the total number,

dN.g, of the events recorded in D and consisted of the secondaries b€ F;; having the mean
momenta between p, and p, + dp,:

dwadp fa p ,Sa,.’lja) / dwbdpb
. _dNa _ a a
<<|-AB ‘ B = Z / H (2m)32E,V, H (27 32Ebev

spins aclg

9 / dx.dp, fo(P,, SasTa) / dxy[dp,] Vv,
(27‘(‘)32Eav beF (2%)32Eb\/b (8)
d

< / dE, (27)464(p0 — ga)| Ma|2(27)*6a(ps + qa)| Maf?

~

aEId

£y . —0,(T,L)-6;

X V> Vas g\t J
2\/E(27T)3L2’Z og VB ©

_ ! y,

> D pins denotes the averaging/summation over the spin projections of the in/out states.
>  Symbol [dp,] indicates that integration in variable p, is not performed, i.e., [[dp,] = dp,.



Under additional assumptions, the unwieldy expression (8) can be simplified in a few steps.
Step 1: Multidimensional integration in WP positions.

Supposition 5: The distribution functions f.(p,, Sa, Za), as well as the factors e~ 2% /L?
vary at large (macroscopic) scales.

The integrand [ ] |[vs (P,,, 5 — z)|? in the integral representation of the overlap volumes (2?) is
essentially different from zero only if the classical word lines of all packets s pass through a small
(though not necessarily microscopic) vicinity of the integration variable.

Supposition 6: The edge effects can be neglected (a harmless extension of supposition [2]).

As a result, expression (8) is reduced to the following:

2
D[S, Vi Vg e~ B T0=€s
dNag = ) /da;/dy /dSBS/dSBd/dEU 677721y — w2 , (9

spins

where T' = yo — xo, L = |y — x| and we have defined the differential forms

dp,fa(Pys Sa,T) dp,, 4 2
s— = - —— (2 s\Pv — (s Ms 3 1
aclg beF
dp, fa(PasSa;Y) [dp,] 4 2
= aJa Do Pl (o y My|?.
dmd (27T)32Ea (27T)32Eb( 77) 5d(p ‘|‘Qd)‘ d| (10b)
aEId bEFd



Step 2: Integration in time variables.

Supposition 7: During the experiment, the distribution functions f, in S and D vary slowly
enough with time so that they can be modelled by the “rectangular ledges”

fa(DysSa;w) =0 (2° — 29) 0 (25 — 2°) f,(p,, Sa; ) for acls, (1)
fa(arsa;y) =0 (¥° —49) 0 (v3 — ¥°) fo(Pa, Sasy) for acly.

Supposition 8: The time intervals needed to switch on and switch off the source and detector
are negligibly small in comparison with periods of stationarity 7, = 23 — 2 and 74 = v5 — y}.

In case of detector, the step functions in (11) can be thought as the “hardware” or “software”
trigger conditions. The periods of stationarity 75 and 74 can be astronomically long, as it is for
the solar and atmospheric neutrino experiments (75 => 74 in these cases), or very short, like in the

experiments with short-pulsed accelerator beams (when usually 75 < 74).

Within the model (11), the only time-dependent factor in the integrand of (9) is e™% = So

the problem is reduced to the (comparatively) simple integral

yg 0 wg 0 —Q.(y%—2%,0)—QF(°—2%,L) ﬁ . 2
dy dr e 7 i = %Td exp (zgoij — ,inj) Sij. (12)
y9 xf



In relation (12) we have adopted the following notation:

exp (—#%) < L
Si; = p4(7_d@ i) Z (1) erf {2@ (Cliz —yp + v--) — z',%’ij}, (13)
1,1/ =1 I
27O L AFE; ™
i = (v; —v;))DL = Bij = 2= : 14
J (UJ v )@ EI/LZJ ) J 4@ 2@[113 ( )
- 2nL 7. - dmky 1 _1/1 .1
Yij = Lij , . Amfj’ Vij 2 (% Uj 7
Ami; =mi —m3, ALE;; = Ei — Ej,

lerf(2) = / dz'erf(2") + % = zerf(z) + %e_zz,
0 T T

For a more realistic description of the beam pulse experiments, the model (11) could be readily

extended by inclusion of a series of rectangular ledges followed by pauses during which f, = 0.

Then substituting (12) into (9) we obtain:

dNop = TdZ/dm/dy/dms/dmd/dE ”"y mTQ'), (15a)

spins

Td
= gpl/ v o EV) - .
TV /d:c/dy/d /do pPap(Ey, |y — x|) (15b)

The differential forms d3, 4 in (15a) are are given by eq. (10) after substitution f, — f,.




Explanation of the factors in eq. (15b).
> Vs and Vp are the spatial volumes of the source and detector, respectively.

>  The differential form d®, is defined in such a way that the integral

?/j/ L= D) / dﬁ;—mp (16)

spins € S

is the flux density of neutrinos in D, produced through the processes I, — F./Xv in S.

More precisely, it is the number of neutrinos appearing per unit time and unit neutrino energy in
an elementary volume dx around the point € §, travelling within the solid angle d€2, about the
flow direction I = (y — «)/|y — ®| and crossing a unit area, placed around the point y € D and

normal to .

>  The differential form do,p is defined in such a way that

7 / dydo,p = > / dydPa (17)

spins € D

represents the differential cross section of the neutrino scattering off the detector as a whole.

In the particular (and the most basically important) case of neutrino scattering in the reaction
va — Féfg, provided that the momentum distribution of the target scatterers a is sufficiently
narrow, the differential form do,p becomes exactly the elementary differential cross section of this

reaction multiplied by the total number of the particles a in D.




>  Now let us address the last sub-integral multiplier of (15b), given by

Pas (B, L) =Y ViiVa;VaiVi;Sij exp (ipy; — 55 — i), (18)
]
0.; = 0, + 6, (19)
m3 1 1
O; = 2@32 {(no —n) + 3 (m—n—n)r; + (n—i— 5) (m—n—n)rf +0@))].  (20)

Let’'s remind that the function ng coincides with n in the case of exact energy-momentum
conservation in the vertices of our diagram. Therefore in the vicinity of the maximum of the
product ds(py — ¢s)da(py + qa) (that is at gs & —qa =~ p.), which gives the main contribution
into the event rate, one can neglect the alternating quantity ng — n in (20). Taking into
account the properties of the function n one can also neglect the O(r?) contributions in (20).
In this approximation

mjR(m—n—n*) miR(m—no—n3) mj[RoZ — (R1)?]

J

Y —_—

Y _— >
AE2 AE2 ARE? =

@j%

e The factor (18) coincides with the QM expression for the neutrino flavor transition
probability,
P (B, L) =Y VaiVa; Vi Vii exp (ipis). (21)
]
provided that S;; = 1, ©;; =0, and «7;; = 0. So it can be considered as a QFT refinement of
the QM result.



BUT!

e A probabilistic interpretation of the function P,z can be only provisionally true, because the
factors S;; and 7; involve the functions ©, n, and m strongly dependent on the neutrino
energy F, and external momenta p, ; all these (except for the momenta of secondaries in D)
are variables of integration in (15b).

As a result, the factor P, 3, as function of o and 3, does not satisfy the unitarity relations
QM) __ QM) _
SR = SRS =1 &
o B

which are a commonplace in the QM theory of neutrino oscillations.

The point is that the domains and shapes of the functions ©, n, and m are essentially different
for each of the nine leptonic pairs (¢n,£3). These differences are governed by kinematics of the
subprocesses in S and D (in particular, their thresholds), that is, eventually, by the leptonic masses
(me, myu, mr) and by the momentum spreads (¢, o,, o+) of the leptonic WPs, which are not
necessarily equal to each other, perhaps even within an order of magnitude.

So Puos(Ev, L) is not the flavor transition probability!

Having this in mind, we will call it probability factor for short.



Two more drawbacks.

e The probabilistic treatment of P, is even more problematic
in real-life experiments, because the detector event rate (with
{3 appearance in our case) is defined by many subprocesses of
different types in the source and detector.

E.g., in the astrophysical, atmospheric and accelerator neutrino
experiments, the major processes of neutrino production are
in-flight decays of light mesons (7,2, K2, K3, Ke3, etc.)
and muons, and neutrino interactions with a detector medium
consist of an incoherent superposition of exclusive reactions of
many types, — from (quasi)elastic to deep-inelastic.

e A “technical” drawback is the dependence of the function S;;
(which will be referred to as decoherence factor) on the four
“instrumental’ time parameters z¥, 23, v?, y5.

So far we have made no assumption concerning a “synchronization” of the time windows

(2%, 29) and (y?,%9). Thus, it is no wonder that the decoherence factor turns to be
vanishingly small in magnitude if these windows are not adjusted to account that the
representative time of ultrarelativistic neutrino propagation from S to D is equal to the mean

distance, L, between S and D.

Before discussing the role of the decoherence factor, we perform one more, and the last,
simplification of the formula for dN,z3.



Step 3: Spatial averaging.

d
O4

Detector

We'll use again the requirement that the characteristic dimensions
of S and D are small compared to L. Under certain conditions,
this allows us to replace approximately

2;25 /Q a2 (Lo + Lay ),

d®, — dd,, do,p — dTup.

\y—m\r—>f:

The range of applicability of this approximation is in general much
more limited than that of (15b), as a consequence of additional re-
strictions implicitly imposed on the distribution functions f,, absolute
dimensions and geometry of S and D.

These issues are bit more complicated then the considered above and
must be the subject of special attention in the neutrino oscillation
experiments.

Finally, we arrive at the very simple but rather rough expression:

AN = 74 / i@, / 5,0 Pus (B D). | (22)

In particular, it is not applicable to the short base-line experiments.



Synchronized measurements.

Let us now return to the decoherence |

factor, limiting ourselves to a consider- —Ts /2 !
ation of “synchronized” measurements,
in which
0 o Ts 0 . Z Td o Il . | >
Ti2 =F5, Y2=LF 5 L—7;/2 L  L+7;/2 y°

With certain technical simplifications, the factor (13) can be expressed through a real-valued
function S(t,t',b) of three dimensionless variables, namely:

Sij = 5 (D7, D74, Bij),
2t'S(t,t',b) = exp (—b2) Re [lerf (t + ¢ + ib) — lerf (¢t — ' +4b)].

Diagonal decoherence function.

S(1,t',0) = o7 [lerf (¢+ 1) —lerf (¢ = )] = So(t, 1), (23)

This function corresponds to the noninterference (neutrino mass independent) decoherence
factors S;;. The following inequalities can be proved:

0< So(t,t') <1, So(t,t') <t/t for t' >t, So(t+ 6t t) > erf(5t) for 5t > 0.



0.75

0.995

0.0

10

The strong dependence of the common suppression factor Sy (,t') on its arguments at ¢t < ¢’
provides a potential possibility of an experimental estimation of the function © (or, rather, of
its mean values within the phase spaces), based on the measuring the count rate

dRops = dNuog /74 as a function of 74 and 7 (at fixed L) and comparing the data with the
results of Monte-Carlo simulations.

The optimal strategy of such an experiment should be a subject of a dedicated analysis.



For the important special case, t = ¢ (representative, in particular, for the experiments with
accelerator neutrino beams), we find

2 2t2 8t
_ Z(1-Z— 422 ) fort<1
e [B(E) e
So(t, ) = erf(2t) — 2;\/%5 ~1 VT 1 3 15 (24)
1

— for t > 1.
NG
17 i
|
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Nondiagonal decoherence function.

The decoherence function S(¢,t',b) at b # 0 is much more involved.

10"

1: t=0.05 4: t=050 7: t=3.00
2: t=0.10 5: t=0775 8 ¢=5.00
3:t=025 6: t=1,00 9: t=10.0

S(t4,b)

At very large t, the function S(t,t,b) becomes nearly independent on t, slowly approaching the
asymptotic behavior S(t,t,b) ~ exp(—b?) (t,t' — o).



S(t,t',0.4).
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S(t,t',15.0)/So(t,t").

S(t,t',0.10)/So(t,t), S(t,t',0.75)/So(t,t"), S(t,t',1.50)/So(t,t"),
S(t,t',0.50)/So(t,t"). S(t,t',1.00)/So(t,t"). S(t,t',4.00)/So(t,t").



Flavor transitions in the asymptotic regime.

In the asymptotic regime,
S(t,t',b) ~ exp(—=b>) (t,t' — c0).

the probability factor (18) takes on the form already known from the literature,®

Pap(Bu, L) = > VaiVa;VaiVi; exp (iij — 5 — Biy — Os5), (25)

1j

but with the essential difference that the factors «7;;, %;; and ©;; do depend (through the
functions ©, n, and m) on the neutrino energy and momenta of the external WPs.

This dependence drastically affects the magnitude and shape of these factors if at least some of the
WPs have relativistic momenta (that is always the case in the contemporary neutrino oscillation
experiments). For sufficiently small and/or hierarchically different momentum spreads o.., the
functions «7;; and %;; may vary in many orders of magnitude through their multidimensional

domain.

3See, e.g., C. Giunti C and C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics (Oxford
University Press Inc., New York, 2007); M. Beuthe, Oscillations of neutrinos and mesons in quantum
field theory, Phys. Rept. 375 (2003) 105 (arXiv:hep-ph/0109119); M. Beuthe, Towards a unique formula
for neutrino oscillations in vacuum, Phys. Rev. D 66 (2002) 013003 (arXiv:hep-ph/0202068).



Major properties of the transition “probability”.

e The factors exp (—42%5) (with i#£7) suppress the interference terms at the distances
exceeding the “coherence length”

coh 1
L =xon ™ [Lij|  (Avij = |v; — wil),

when the vWPs 1|)fXd (pi, Xs — Xq) and 1|)j)'<d (pj, Xs — Xq4) are strongly separated in space
and do not interfere anymore. Clearly ij‘?h — 00 in the plane-wave limit.

e The suppression factors exp (—%’?j) (i#7) work in the opposite situation, when the
external packets in S or D (or in both S and D) are strongly delocalized

The gross dimension of the the neutrino production and absorption regions in S and D is of
the order of 1/®. The interference terms vanish if this scale is large compared to the
“interference length”
g _ 1 _ 2Ly
* 4AEW ™m .
In other words, the QFT approach predicts vanishing of neutrino oscillations in the plane-wave
limit. In this limit, the flavor transition probability does not depend on L, E., and neutrino

masses ™m; and becomes

PWL 2 2
Pas == > Vel *[Vail” < 1.

Thereby, a nontrivial interference of the diagrams with the intermediate neutrinos of different
masses is only possible if © # 0.



e Our detailed analysis of the generic subprocesses 1 — 2, 1 — 3, and 2 — 2 shows that
© £ 0 if in both vertices of the macrodiagram there are at least two interacting WPs s (no
matter in or out) with o, # 0.

e The same requirement unavoidably leads to the vanishing of the non-diagonal terms, when

the mean distance between & and D becomes large enough in comparison with the coherence
h

lengths L35,

e As a result, the range of applicability of the standard QM formula for the neutrino

oscillations probability is limited by rather restrictive conditions,

2mDL\’ m O\
! 1 d ij 1.
(EvLij> <5 (2@Lij> <1, and (|0;]) <

The angle brackets symbolize an averaging over the phase subspace of the process (3) which
provides the main contribution into the measured count rate.

The obtained conditions were obtained under a number of assumptions and simplifications, which are
not necessarily adequate to fully represent the real-life experimental conditions. Our consideration
suggests that in the analysis and interpretation of real data one should take into account the
operating times of the source and detector, their geometry and dimensions, explicit form of the

distribution functions of in-packets, and other technical details.




Intermediary conclusions on the QFT approach.

e The standard QM v-oscillation formula has rather limited range of applicability.

e The QFT modifications drastically depend upon:

> momentum spreads of the external “in” and “out”
wave packets (determined by the environment
and “prehistory” of their creation).

> reaction types in the neutrino production and
absorption regions [‘source” and "detector”, re-
spectively] and phase-space domains of these re-
actions;

> time interval of steady-state operation of the
source ‘machine " and detector exposure time;

> dimensions of the source and detector and dis-
tance between them.

e Essentially all QFT effects are decoherent and thus lead to a “smoothing”, distortion or
vanishing of the interference (oscillating) terms and to a general suppression of the
neutrino event rate in the detector. This suppression is potentially measurable in the
dedicate experiments.

The predicted effects are usually small. But “small’ does not mean “uninteresting’”.

Modern physics flourishes due mainly to discovering very small effects.



