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Interaction Lagrangian and weak currents

In the Standard Model (SM), the charged and neutral current neutrino interactions are
described by the following parts of the full Lagrangian:

£5%(x) =

(2)Wo(z) +He and LN(z) = —— jNC(a)7%(x).

g .
9 :
24/2 2 cos Oy

Here g is the SU(2) (electro-weak) gauge coupling constant
g =4V2mi,Gp, gsinfw = e

and Oy is the weak mixing (Weinberg) angle (sin® Oy (Mz) = 0.23120).
The leptonic charged current and neutrino neutral current are given by the expressions:

jg S (w) =2 Z Upn(2)valr(z) and jNC(z) = Z Ve,.(%)YaVe,L(T).
l=e,u,T,... l=e,u,T,...

The currents may include (yet unknown) heavy neutrinos and corresponding charged
leptons. The left- and right-handed fermion fields are defined as usually:

veante) = (7570 wle) and tuynle) = (570 b0




Note that the kinetic term of the Lagrangian includes both L and R handed neutrinos and
moreover, it can include other sterile neutrinos:

Lo :% [D(2)y" Oav(x) — 0T (x)y v(x)] = %?(m)?u(.ﬂv)
:% [ﬁL($)<5>VL (z) + ﬁR(a:)?VR(aj)} :
Ve () Ve,./R(T) Ve ()
(VM (33)\ /VM,L/R(Jj)\ - (Vﬂ(x)\
viw) = vo(@) +va@) = | |, vt = | roet) | < 200 )
\ ) \ ) \ )
Neutrino chirality: vsvr, = —vr and vsvr = +vg.

The Lagrangian of the theory with massless neutrinos is invariant with respect to the global
gauge transformations

ve(z) = e™up(z), 0(z) — e l(z) with A, = const.

This leads (through 1st Noether's theorem) to conservation of the individual lepton flavor
numbers L, (electron, muon, tauon, etc.). It is not the case for massive neutrinos.

There are two types of possible neutrino mass terms: Dirac and Majorana.



Dirac neutrinos
The conventional Dirac mass term for a single spinor field 1(x) is well known:
() () = —m [Fr(@)or (@) + By (2)r()] = —mPa(@)br(z) + He
The most general extension of this construction to the N-generation Dirac neutrino case reads:
Lp(z) = —Vr(z)Myve(z) +Hc,
where M_ is a nonsingular [to exclude massless neutrinos] complex N x N matrix.

In general, N > 3 since the column v may include both active and sterile neutrino fields which
do not enter into the standard charged and neutral currents.

Any nonsingular complex matrix can be diagonalized by means of an appropriate bi-unitary
transformation

M, =VmV', m = |[mydul = diag (m1, me,...,mn),

where V and V are unitary matrices and my > 0. Therefore

N
Lp(x) = —v/ r(z)mv(z) + He. = —v/(z)mv (z) = — ka?k(a:)uk(x),
k=1
where the new fields vx are defined by
vi(x) = Vivi(z), vi()=Vivg(e), v(z)=@i,v,...v)"

The fields v';(z) do not enter into £; = the matrix V remains out of play...



Since o o
VVIi=VIiV=1 and VIV=ViVv=1

the neutrino kinetic term in the Lagrangian is transformed to

Lo = % 7, (2) B v (@) + V) B ()| = L 07() B () = %ka(az)ﬁyk(m).

ey
2
Y

vk (x) is the field of a Dirac neutrino with the mass my and the flavor LH neutrino fields
ve,.(x) involved into the SM weak lepton currents are linear combinations of the LH
components of the fields of the neutrinos with definite masses:

/
vy = Vv or l/g,ng VekVk, L
k

The matrix V is referred to as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino
mixing matrix while the matrix V is not honored with a personal name.

Quark-lepton complementarity (QLC): Of course the PMNS matrix it is not the same as the
CKM (Cabibbo-KobayashiMaskawa) quark mixing matrix. However the PMNS and CKM matrices
may be, in a sense, complementary to each other.

The QLC means that in the same (PDG) parametrizations the (small) quark and (large) lepton
mixing angles satisfy the empirical (perhaps accidental) relations:

O™ 0TS o /4, O™ 4 OIS o



Parametrization of mixing matrix for Dirac neutrinos

2

It is well known that a complex n x n unitary matrix depends on n“ real parameters.

The classical result by Francis Murnaghan [F. D. Murnaghan, “The unitary and rotation groups (Lectures
on Applied Mathematics, Volume 3),” Spartan Books, Washington, D.C. (1962)] states that any n Xn
matrix from the unitary group U(n) can be presented as product of the diagonal phase matrix

I' = diag (eml ez ,em">,
containing n phases ag, and n(n — 1)/2 matrices U whose main building blocks have the form

cos 0 sinfe ™\ (1 0 cosf# sinf) (1 O
—sinfet? cos 0 —\0 e ) \—sinf cosf)\0 e )"

vV
Euler rotation

Therefore any n X n unitary matrix can be parametrized in terms of
n(n — 1)/2 “angles” (taking values within [0, 7/2])

and
n(n + 1)/2 “phases” (taking values within [0, 27)).
The usual parametrization of both the CKM and PMNS matrices is of this type.

IMPORTANT: Murnaghan's factorization method does not specify the sequence of the
building blocks I' and U.



One can reduce the number of the phases further by taking into account that the
Lagrangian with the Dirac mass term is invariant with respect to the transformation

O el vp— PRy, Vi ei(b’“_‘”)ng,
and to the global gauge transformation
(—e™, v ey, with A = const. (1)
Therefore 2N — 1 phases are unphysical and the number of physical (Dirac) phases is

N2 -3N+2 (N—-1)(N -2
o= YD 0N g z +2 _( >2< )

5 ) (N >2);
np(2) =0, np(3) =1, np(4)=3,...

The global symmetry (1) leads to conservation of the lepton charge

L:ZLg

b=e,u,T,...

common to all charged leptons and all neutrinos ;. However

The individual lepton flavor numbers L, are no longer conserved.

The nonzero physical phases lead to the C'P and T violation in the neutrino sector.



Three-neutrino case

In the most interesting (today!) case of three lepton generations one defines the orthogonal
rotation matrices in the ij-planes which depend upon the mixing angles 6;;:

C12 S12 0 C13 0 S13 1 0 0
Oi2=|—-5s12 ci2 0}, Oiz3= 0 1 0|, Ox=|0 ca3 s23],
O O 1 —S13 O C13 O —S5923 C23
Solar matrix Reactor matrix Atmospheric matrix

(where ¢;; = cos0;j, si; =sin#;;) and the diagonal matrix with the Dirac phase factor:
I'p = diag (1, 1, ew).

The parameter § is commonly referred to as the Dirac CP-violation/violating phase.

Finally, by applying Murnaghan's factorization, the PMNS matrix for the Dirac neutrinos can
be parametrized as

—16
C12C13 S12C13 S13€
_ T _ 6 is
Vip) = O23I'pO013I'; 012 = | —s12c23 — c12523513€ C12C23 — 512523513€ 523C13
X 20
812823 — C12€23513€ —C12823 — S512€23S813€ C23C13

* This is the Chau—Keung presentation advocated by the PDG for both CKM and PMNS matrices.

* Remember that the positioning of the factors in V() is not fixed by the Murnaghan (or any
other) algorithm and is just a subject-matter of agreement.

* Today we believe we know a lot about the entries of this matrix.



Since the Dirac mass term violates conservation of the individual lepton numbers L., L, ,vL,,
it allows many lepton family number violating processes, like

,u,i —>ei—|—'y, ,u,i —>6i—|—6+—|—6_,
K+—>7T+—|—/L:|:—|—6:|:, K_—>7T_—|—/L:|:—|—6:|:,
w +(AZ2)—=e +(A2), 7T +AZ)—>pu +(A,2),...
However the (353)0., decay or the kaon semileptonic decays like
Kt sa +ut+e”, K 5ot 4+u +e,

etc. are still forbidden as a consequence of the total lepton charge conservation.

Table 1: Current limits on the simplest lepton family number violating 1 and 7 decays.

[From K. Nakamura et al., (Particle Data Group), “Review of particle physics,” J. Phys. G 37 (2010) 075021 and
J. Adam et al. (MEG Collaboration), “New limit on the lepton-flavour violating decay ™ — e™~”, arXiv:1107.5547
[hep-ex] (PSI-R-99-05 Experiment).].

Decay Modes Fraction C.L. Decay Modes | Fraction C.L.
o —e v, | <1.2% 90% T ey <3.3x107° | 90%
ut — ety <24%x107* | 90% T = uy <4.4%x107% | 90%
pu- —eete” | <1.0x 10712 | 90% T e | <80x107°% | 90%
wo = 2y <7.2x107 | 90% ™ = u | <1.1x1077 | 90%

Some of the limits might seem impressive. But are they really so good?



Neutrinoless muon decay in SM

The L, and L. violating muon decay u~ — e~ 7 is al-
lowed if V;;, Ve # 0 for & = 1,2 or 3. The correspond-
ing Feynman diagrams include W loops and thus the
decay width is strongly suppressed by the neutrino to
W boson mass ratios:

F(,u_—>e 7

R = =
I'(p= — e v, ve) 327‘(‘

Z k:vek:

Since my/mw = 1.24 x 107" (my/1 eV), the ratio
can be estimated as

W

2

R~52x10"18

Y

mi 2
zk: kV€k<1 v)

while the current experimental upper limit is (at least!)
35 orders of magnitude larger (see Table 1):

Riexp) < 24 x 107'% at 90% C.L. (NO GO!)

[Some nonstandard models are bit more optimistic.]

We must deeply appreciate the oscillation phenomenon
which makes the miserable v mass effect measurable.




Majorana neutrinos
The charge conjugated bispinor field ¢ is defined by the transformation
Yt =CY', Yo yr=—9'C,
where C' is the charge-conjugation matrix which satisfies the conditions
CVECT = —v,, CriCl=ns, CT=Cc""'=C, " =-C,
and thus coincides (up to a phase factor) with the inversion of the axes xz° and z*:

o . O ()
C' =72 = (02 0)

Reminder: Pauli & Dirac matrices.
_,_(r 0 (0 1 (0 i A
0="=\o 1) *=\1 o) 27\ o) = \o -1/

0 [ 0o 0 k. . 0 Ok . 5 _ 0 00
ol —’yo—(o _00), V= ’yk—(_ak O),k—1,2,3, V=Y = (00 0)-

Clearly a charged fermion field ¥ (x) is different from the charge-conjugated field 1°(x).

But a neutral fermion field can coincide with the charge-conjugated field.



In other words: for a neutral fermion field v(x) the following equality is not forbidden:

v(x) =v(x) (Majorana condition) (2)

Majorana neutrino and antineutrino coincide.

1" a

“Everything which is not forbidden is allowed...” ® = The real vs could be Majorana vs.

A few more details: In the chiral representation

_ ¢ c _ ~=T __ —O'QX*
V= (X)’ v-=Cv" = (+02¢*).

(2) = ¢=—02x" and x=02¢0" = P+x=02(0—X),

The Majorana neutrino is two-component, i.e. needs only one chiral projection. Then

o (55 (22 e (52 () -
4

@
V=VL +VR =V[ + V.

The simplest generalization of Eq. (2), v“(x) = e*?v(x) (¢ = const), is not very interesting.

alt is a constitutional principle of English law and not a law of Nature. In some other countries, it
can be slightly corrected as, e.g., “Everything is forbidden, even that which is expressly allowed.”



The Majorana mass term in the general N-neutrino case is [Gribov & Pontecorvo (1969)]:

1_.
Lm(x) = —§UL(:E)MMVL(:1:) + H.c.,

Here M is a N x N complex nondiagonal matrix and, in general, N > 3.

: T : T
It can be proved that the M should be symmetric, M | = M . Assuming for simplicity that
its spectrum is non-degenerated, the mass matrix can be diagonalized by means of the
following transformation [Bilenky & Petcov (1987)]

MM — V*mVT, m = Hmk(sle = diag(ml,m2,- .. 7mN)7

where V is a unitary matrix and my > 0. Therefore

v = VTl/L, (V) =C (Z) T, v =vp + (V)"

The last equality means that the fields v (x) are Majorana neutrino fields. Considering that
the kinetic term in the neutrino Lagrangian is transformed to

Lo =

L —, S _i _ >
1 (:U)@V(a:)—zzk:uk(a})auk(x),

one can conclude that vy (x) is the field with the definite mass my.



The flavor LH neutrino fields vy 1,(z) present in the standard weak lepton currents are
linear combinations of the LH components of the fields of neutrinos with definite
masses:

I/L:VI//L or I/g,L:E ‘/Kkl/k,[,-
k

Of course neutrino mixing matrix V is not the same as in the case of Dirac neutrinos.

There is no global gauge transformations under which the Majorana mass term (in its
most general form) could be invariant. This implies that there are no conserved lepton
charges that could allow us to distinguish Majorana vs and Ts. In other words,

Majorana neutrinos are truly neutral fermions.

Parametrization of mixing matrix for Majorana neutrinos

Since the Majorana neutrinos are not rephasable, there may be a lot of extra phase
factors in the mixing matrix. The Lagrangian with the Majorana mass term is invariant
with respect to the transformation

l— emgf, Vi +— e tat Vir



Therefore N phases are unphysical and the number of the physical phases now is

N(N +1 N(N —1 N —1)(N —2

(VD) NN o) (VD=2
2 2 \ 2 PR

Dirac‘;hases Majorana phases

= np + Nwm;

?”L|\/|(2) = 1, ?”L|\/|(3) = 2, n|\/|(4) = 3, cee

In the case of three lepton generations one defines the diagonal matrix with the extra
phase factors: I'y = diag (e'®*/2,e'*2/2 1), where a2 are commonly referred to as
the Majorana CP-violation phases. Then the PMNS matrix can be parametrized as

Vmy = 023p 013 012w = V(pyI'm

—120 1 /2
C12C13 5$12C13 S13€ elor/ 0 0
- 1) 1) ; 2
= | —S12¢23 — Cc12823813€ C12C23 — S812823813€ $23C13 0 eio2/ 0
i8 i8
5§12823 — €C12C23513€ —C12823 — S12C23513€ C23C13 0 0 1

Neither Ly nor L =), L, is conserved allowing a lot of new processes, for example,
T et (T, 1T —set () KT, 7 = ptv., Kt s autet, KT — alefr.,
Dt - K putut, Bt - K etpt, 2= = pu p~, AT =3 putpu™, et

No one was discovered yet but (may be!?) the (55)o. decay (Heidelberg-Moscow experiment).



See-saw mechanism
Dirac-Majorana mass term for one generation

It is possible to consider mixed models in which both Majorana and Dirac mass terms are
present. For simplicity sake we’ll start with a toy model for one lepton generation.

Let us consider a theory containing two independent neutrino fields v, and vg:

vr, would generally represent any active neutrino (e.g., vr, = ver),
VR can represents a right handed field unrelated to any of these or

it can be charge conjugate of any of the active neutrinos (e.g., vr = (vu1)°).

We can write the following generic mass term between v;, and vg:

Lo =— MpULVR —(1/2) [mL 7[,1/2 —I—me%I/R] +H.c. (3)
%,—/ (. ~ J
Dirac mass term Majorana mass term

* As we know, the Dirac mass term respects L while the Majorana mass term violates it.

* The parameter mp in Eq. (3) is in general complex; to simplify matters, we'll assume it to
be real but not necessarily positive.

* The parameters my, and mp in Eq. (3) can be chosen real and (by an appropriate
rephasing the fields v;, and vr) non-negative, but the latter is not assumed.

* Obviously, neither v;, nor vgr is a mass eigenstate.



In order to obtain the mass basis we can apply the useful identity

VLVR = (vR)C(VL)C (4)

The identity (4) is a particular case of the more general relation
1Dy =, CTTC 1y,

in which 11 2 are Dirac spinors and I represents an arbitrary combination of the Dirac v matrices.

Relation (4) allows us to rewrite Eq. (3) as follows

Lom = —% (TL, (Tr)°) (mL mD) ((”L)C) +Hec = —%ULM(VL)C +Hec

mp MR VR

If (again for simplicity) C'P conservation is assumed the matrix M can be diagonalized by the
orthogonal transformation that is rotation

V = < cos b sm@) with 0 = %arctan (Qm—D>

—sinf cos6 mpr — ML

and we have
VMV = diag(mi, m2),

where m; o are eigenvalues of M given by

1
mi o = 5 (mL +mpgr * \/(mL —mpg)? + 4m2D>.




Since mp,r, r are real, the eigenvalues are real but not necessarily positive. Let's define
(. = signmy,

and rewrite the mass term in the new basis:

1 c —  \c
Lo = 9 [C1 |ma| V1L (viL)” + G2 |me| (V2r)" v2r] + H.c,, (5)

The new fields v11, and voRr represent chiral components of two different neutrino states with
“masses’ m1 and ms, respectively:

vi=cosOvr —sinf vy,

(Z;) -V (Zézi> — { vor= sin @ v;, + cos 0 vg.

Now we define two 4-component fields
vi =i+ G (i) and  ve = var + (2 (12R)C.
Certainly, these fields are self-conjugate with respect to the C' transformation:
ve = G (k=1,2)
and therefore they describe Majorana neutrinos. In terms of these fields Eq. (5) reads
Ly, = —% (lm1| 71va + |ma| Dara). (6)

We therefore conclude that vi(x) is the Majorana neutrino field with the definite (physical)
mass |my|.



There are several special cases of the Dirac-Majorana mass matrix M which are of
considerable phenomenological importance, in particular,

0 m s : ..
(A): M= (m O) —  |miz2|=m, 0= 1 (maximal mixing).
Two Majorana fields are equivalent to one Dirac field.

A generalization |mr r| < |mp|, leads to the so-called

Pseudo-Dirac neutrinos.

(B): M= (mL m) —> mi2=mpEtmp, 0= (maximal mixing);

T
m  mry 4

(C): M= (T?Z E) or, more generally, |mp| < |mgr|, mp > 0.

The see-saw

The case (C) with m < M is the simplest example of the see-saw mechanism. It leads to two
masses, one very large, mi ~ M, other very small, mas ~ —m?/M < m, suppressed compared
to the entries in M. In particular, one can assume

m ~myg or mg (0.5 MeV to 200 GeV) and M ~ Mgyt ~ 10"°7'° GeV.

Then |ma2| can ranges from ~ 10~ eV to ~ 0.04 €V. The mixing between the heavy and light
neutrinos is extremely small: 0 ~ m /M ~ 1072 — 10" < 1.



If one eigenvalue goes up, the other
goes down, and vice versa. This is
the reason of the term see-saw...

a bit intricate for so simple idea...

m,| ~m /M<m <M



More neutral fermions

A generalization of the above scheme to IV generations is almost straightforward but
technically rather cumbersome. Let's consider it schematically for the N = 3 case.

> If neutral fermions are added to the set of the SM fields, then the flavour neutrinos can
acquire mass by mixing with them.

> The additional fermions can be?
Gauge chiral singlets per family NV (e.g., right-handed neutrinos) [Type | seesaw], or
SU(2) x U(1) doublets (e.g., Higgsino in SUSY), or
Y =0, SU(2)L triplets ¥ (e.g., Wino in SUSY) [Type Il seesaw].

> Addition of three right-handed neutrinos N;r leads to the see-saw mechanism with the
following mass terms:

1 c
Loy = — Z {%LM;? iR~ 5 (Nir) Mi]j' ir+ H.c.

]
> The above equation leads to the following 6 X 6 see-saw mass matrix:

M — 0 m5
mp MR '

Both mp and mpg are 3 X 3 matrices in the generation space.

aType Il seesaw operates with additional SU(2), scalar triplets A.



Similar to the one-generation case we assume that the eigenvalues of mp are large in
comparison with the eigenvalues of mp. Then M can be approximately block-diagonalized by

an unitary transformation:
U'MU = diag (M1, M>) + O (mpMpz),

where . . »
U_ 1+ §m}) (MRM};) mp mE (M};)

1 1
—M]_%lmp 1+ §M§1mpm}) (M};)

M, ~ —mpMz'mp and M, ~ Mg.

The mass eigenfields are surely Majorana neutrinos.

e Quadratic see-saw: If eigenvalues of M r are of the order of a large scale parameter
M ~ Mgut? [e.g., Mr = M1] than the standard neutrino masses are suppressed:

2
mp;

M

Here mp; ~ Y;(H) are the eigenvalues of mp. As long as these eigenvalues (or Yukawa
couplings Y;) are hierarchical, the Majorana neutrino masses display quadratic hierarchy:

my; ~ K Mps,

2 2 2
mi1 M2 1 MM3 X Mpq1 - Mpo 1M p3.

alarge M is natural in, e.g., SO(10) inspired GUT theories which therefore provide a nice framework
to understand small neutrino masses [see, e.g., poster presentation by Rohit Verma et al. in this School.]



e Linear see-saw: In a more special case, Mrp = (M /Mp)Mp, where Mp is the generic
scale of the charged fermion masses than

MDmD-
———?Ef——i <& MDp;

my; ~

but the hierarchy is linear:

mi M2 M3 XMMp1 - Mp2 - MpS3.

The two mentioned possibilities are, in principle, experimentally distinguishable.

LAY

Neutrino Islow

MGUT MP

(1.2209%10" GeV/*)

1017 101 101 1020 10%' 1022 102 1024 10%5 1026 1027 102 10%°
mass (eV/c?)




Double see-saw & inverse see-saw

The see-saw can be implemented by introducing additional neutrino singlets beyond the
three RH neutrinos involved into the see-saw type |. One have to distinguish between

RH neutrinos v, which carry B — L and perhaps (not necessary) form SU(2)g
doublets with RH charged leptons, and

Neutrino singlets v g, which have no Yukawa couplings to the LH neutrinos but
may couple to vg.

If the singlets have nonzero Majorana masses M gg while the RH neutrinos have a zero
Majorana mass, M rr = 0, the see-saw mechanism may proceed via mass couplings of
the singlets to RH neutrinos, M gg. In the basis (v, vg,vs), the 9 X 9 mass matrix is

0 mryrr 0
mrrg 0  Mgg

Assuming that the eigenvalues of M gg are much smaller than the eigenvalues of Mg,
the light physical LH Majorana neutrino masses are then doubly suppressed,

- -1 T \—1_ T 2 L NA2 2

This scenario is usually used in string inspired models [see, e.g., R.N.Mohapatra & J.W.Valle,
Phys. Rev. D 34 (1986) 1642; M.C.Gonzalez-Garcia & J.W.F.Valle, Phys. Lett. B 216 (1989) 360].



Radiative see-saw

An alternative mechanism relies on the radiative generation of neutrino masses [H.Georgi &
S.L.Glashow, Phys. Rev. D7 (1973) 2487; P.Cheng & L.-F.Li, Phys. Rev. D17 (1978) 2375; Phys. Rev. D 22
(1980) 2860; A.Zee, Phys. Lett. B93 (1980) 389;....] In this scheme, the neutrinos are massless at
the tree level, but pick up small masses due to loop corrections.

In a typical model [K.S. Babu & V.S.

Mathur, Phys. Rev. D11 (1988) 3550] the <X§> Q O <X§>

see-saw formula is modified as

AN
s (2) 2 o
v ™\ =5 s ~
mo M 4514/ UM

where the prefactor a/m ~ 2 x 1077 )/ Y
arises due to the loop structure of the I \
neutrino mass diagram. Light neutri- »— —<
nos are now possible even for relatively VL KR : fL V
“light” mass scale M of “new physics.” 0
The scalar sector consists of the multi- C) <@1 >

plets

+
xp.r = (xTx%) o— (91 P -
L,R X X L.R’ b gpo ) nL,R‘
1 2

The diagram in the figures is responsible for generation of Majorana masses for vy,. The analogous
diagram is obtained by the replacement L —+ R and @f — QPQL.



Beyond this lecture

SUSY & SUGRA see-saw

TeV see-saw & Large Extra Dimensions
Dirac see-saw

Top (top-bottom) see-saw

See-saw & Dark Matter

See-saw & Leptogenesis

N I O

Conclusions [are not actually validated]

e The “mainstream” neutrino mass models, defined as see-saw models, are capable of
describing the atmospheric—reactor—accelerator neutrino oscillation data, the LMA
MSW solar neutrino solution, and cosmological limits.

e The Standard Model and the Minimal Supersymmetric Standard Model may
naturally be extended to incorporate the see-saw mechanism.

e [A fly in the ointment] Wealth of the models (>> number of the authors of the
models) greatly complicates the choice of the best one.



BACKUP SLIDES




Bi-unitary diagonalization

Let's prove that any nonsingular matrix M can be diagonalized by a bi-unitary transformation.

Proof. Since MM is Hermitian, there exist a unitary matrix V such that
Vi (MMT) V=m’= diag (m%,m%, e ,m?\;),

where m? are real for any 7. Moreover mf > 0. Indeed, MTV = (V]Ll\/I)T and thus

%

) «
=X (v, (V) < 5w [0
the equality is however excluded since m? is nonsingular. Let's now define the matrix
V=MVm"
4
Vi=m 'ViM
4

VIiV=m 'VIMM V! = m 'm’m™! = 1,

that is V is unitary and N
VIMV = m.

Q.E.D.



TeV-scale gauged B — L symmetry with Inverse see-saw

Consider briefly one more inverse see-saw model [S.Khalil, Phys. Rev. D 82 (2010) 077702].
The model is based on the following:

(i) The SM singlet Higgs boson, which breaks the B — L gauge symmetry, has B — L unit
charge.

(ii) The SM singlet fermion sector includes two singlet fermions S+ with B — L charges +-2
with opposite matter parity.

The Lagrangian of neutrino masses, in the flavor basis, is given by

vrmprgr + vy MNS_ 4+ 1sS_S_.

In the limit ;s — 0, which corresponds to the unbroken (—1)%"° symmetry, the light

neutrinos remain massless. Therefore, a small nonvanishing s can be considered as a slight
breaking of a this global symmetry and the smallness of 15 is natural. Small ©s can also be
generated radiatively.

In the basis (v, v%,S-), the 9 X 9 mass matrix is

0 mp 0
m% 0 MN
0 My ps

So, up to the notation, it reproduces all the properties of the double see-saw.



