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Interation Lagrangian and weak urrents

In the Standard Model (SM), the harged and neutral urrent neutrino interations are

desribed by the following parts of the full Lagrangian:

LCC

I (x) = − g

2
√
2
jCCα (x)Wα(x) + H.. and LNC

I (x) = − g

2 cos θ

W

jNCα (x)Zα(x).

Here g is the SU(2) (eletro-weak) gauge oupling onstant

g2 = 4
√
2m2

WGF , g sin θ

W

= |e|

and θ

W

is the weak mixing (Weinberg) angle (sin2 θ

W

(MZ) = 0.23120).

The leptoni harged urrent and neutrino neutral urrent are given by the expressions:

jCCα (x) = 2
∑

ℓ=e,µ,τ,...

νℓ,L(x)γαℓL(x) and jNCα (x) =
∑

ℓ=e,µ,τ,...

νℓ,L(x)γανℓ,L(x).

The urrents may inlude (yet unknown) heavy neutrinos and orresponding harged

leptons. The left- and right-handed fermion �elds are de�ned as usually:

νℓ,L/R(x) =

(
1± γ5

2

)

νℓ(x) and ℓL/R(x) =

(
1± γ5

2

)

ℓ(x).



Note that the kineti term of the Lagrangian inludes both L and R handed neutrinos and

moreover, it an inlude other sterile neutrinos:

L0 =
i

2
[ν(x)γα∂αν(x)− ∂αν(x)γ

αν(x)] ≡
i

2
ν(x)
←→
∂ ν(x)

=
i

2

[
νL(x)

←→
∂ νL(x) + νR(x)

←→
∂ νR(x)

]
,

ν(x) = νL(x) + νR(x) =




νe(x)
νµ(x)
ντ (x)
.
.
.



, νL/R(x) =




νe,L/R(x)
νµ,L/R(x)
ντ,L/R(x)

.

.

.




=
1± γ5

2




νe(x)
νµ(x)
ντ (x)
.
.
.



.

Neutrino hirality: γ5νL = −νL and γ5νR = +νR.

The Lagrangian of the theory with massless neutrinos is invariant with respet to the global

gauge transformations

νℓ(x)→ eiΛℓνℓ(x), ℓ(x)→ eiΛℓℓ(x) with Λℓ = onst.

This leads (through 1st Noether's theorem) to onservation of the individual lepton �avor

numbers Lℓ (eletron, muon, tauon, et.). It is not the ase for massive neutrinos.

There are two types of possible neutrino mass terms: Dira and Majorana.



Dira neutrinos

The onventional Dira mass term for a single spinor �eld ψ(x) is well known:

−mψ(x)ψ(x) = −m
[
ψR(x)ψL(x) + ψL(x)ψR(x)

]
= −mψR(x)ψL(x) + H..

The most general extension of this onstrution to the N -generation Dira neutrino ase reads:

L

D

(x) = −νR(x)M

D

νL(x) + H..,

where M

D

is a nonsingular [to exlude massless neutrinos℄ omplex N ×N matrix.

In general, N ≥ 3 sine the olumn νL may inlude both ative and sterile neutrino �elds whih

do not enter into the standard harged and neutral urrents.

Any nonsingular omplex matrix an be diagonalized by means of an appropriate bi-unitary

transformation

M

D

= ṼmV
†, m = ||mkδkl|| = diag (m1,m2, . . . ,mN ),

where V and Ṽ are unitary matries and mk ≥ 0. Therefore

L

D

(x) = −ν′
R(x)mν

′
L(x) + H.. = −ν ′(x)mν

′(x) = −
N∑

k=1

mkνk(x)νk(x),

where the new �elds νk are de�ned by

ν
′
L(x) = V

†
νL(x), ν

′
R(x) = Ṽ

†
νR(x), ν

′(x) = (ν1, ν2, . . . , νN )T .

The �elds ν
′
R(x) do not enter into LI =⇒ the matrix Ṽ remains out of play...



Sine

VV
† = V

†
V = 1 and Ṽ

†
Ṽ = Ṽ

†
Ṽ = 1

the neutrino kineti term in the Lagrangian is transformed to

L0 =
i

2

[
ν′L(x)

←→
∂ ν′L(x) + ν′R(x)

←→
∂ ν′R(x)

]
=
i

2
ν′(x)

←→
∂ ν

′(x) =
i

2

∑

k

νk(x)
←→
∂ νk(x).

⇓

νk(x) is the �eld of a Dira neutrino with the mass mk and the �avor LH neutrino �elds

νℓ,L(x) involved into the SM weak lepton urrents are linear ombinations of the LH

omponents of the �elds of the neutrinos with de�nite masses:

νL = Vν
′
L or νℓ,L =

∑

k

Vℓkνk,L.

The matrix V is referred to as the Ponteorvo-Maki-Nakagawa-Sakata (PMNS) neutrino

mixing matrix while the matrix Ṽ is not honored with a personal name.

Quark-lepton omplementarity (QLC): Of ourse the PMNS matrix it is not the same as the

CKM (Cabibbo-KobayashiMaskawa) quark mixing matrix. However the PMNS and CKM matries

may be, in a sense, omplementary to eah other.

The QLC means that in the same (PDG) parametrizations the (small) quark and (large) lepton

mixing angles satisfy the empirial (perhaps aidental) relations:

θCKM12 + θPMNS

12 ≃ π/4, θCKM23 + θPMNS

23 ≃ π/4.



Parametrization of mixing matrix for Dira neutrinos

It is well known that a omplex n× n unitary matrix depends on n2

real parameters.

The lassial result by Franis Murnaghan [F. D. Murnaghan, �The unitary and rotation groups (Letures

on Applied Mathematis, Volume 3),� Spartan Books, Washington, D.C. (1962)℄ states that any n× n

matrix from the unitary group U(n) an be presented as produt of the diagonal phase matrix

Γ = diag

(
eiα1 , eiα2 , . . . , eiαn

)
,

ontaining n phases αk, and n(n− 1)/2 matries U whose main building bloks have the form

(
cos θ sin θ e−iφ

− sin θ e+iφ cos θ

)
=

(
1 0

0 e+iφ

)(
cos θ sin θ
− sin θ cos θ

)

︸ ︷︷ ︸

Euler rotation

(
1 0

0 e−iφ

)
.

Therefore any n× n unitary matrix an be parametrized in terms of

n(n− 1)/2 �angles� (taking values within [0, π/2])

and

n(n+ 1)/2 �phases� (taking values within [0, 2π)).

The usual parametrization of both the CKM and PMNS matries is of this type.

IMPORTANT: Murnaghan's fatorization method does not speify the sequene of the

building bloks Γ and U.



One an redue the number of the phases further by taking into aount that the

Lagrangian with the Dira mass term is invariant with respet to the transformation

ℓ 7→ eiaℓℓ, νk 7→ eibkνk, Vℓk 7→ ei(bk−aℓ)Vℓk,

and to the global gauge transformation

ℓ 7→ eiΛℓ, νk 7→ eiΛνk, with Λ = onst. (1)

Therefore 2N − 1 phases are unphysial and the number of physial (Dira) phases is

n

D

=
N(N + 1)

2
− (2N − 1) =

N2 − 3N + 2

2
=

(N − 1)(N − 2)

2
(N ≥ 2);

n

D

(2) = 0, n

D

(3) = 1, n

D

(4) = 3, . . .

• The global symmetry (1) leads to onservation of the lepton harge

L =
∑

ℓ=e,µ,τ,...

Lℓ

ommon to all harged leptons and all neutrinos νk. However

The individual lepton �avor numbers Lℓ are no longer onserved.

• The nonzero physial phases lead to the CP and T violation in the neutrino setor.



Three-neutrino ase

In the most interesting (today!) ase of three lepton generations one de�nes the orthogonal

rotation matries in the ij-planes whih depend upon the mixing angles θij :

O12 =



c12 s12 0
−s12 c12 0
0 0 1




︸ ︷︷ ︸

Solar matrix

, O13 =



c13 0 s13
0 1 0
−s13 0 c13




︸ ︷︷ ︸

Reator matrix

, O23 =



1 0 0
0 c23 s23
0 −s23 c23




︸ ︷︷ ︸

Atmospheri matrix

,

(where cij ≡ cos θij , sij ≡ sin θij) and the diagonal matrix with the Dira phase fator:

Γ

D

= diag

(
1, 1, eiδ

)
.

The parameter δ is ommonly referred to as the Dira CP-violation/violating phase.

Finally, by applying Murnaghan's fatorization, the PMNS matrix for the Dira neutrinos an

be parametrized as

V

(D)

= O23Γ

D

O13Γ
†

D

O12 =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13


 .

⋆ This is the Chau�Keung presentation advoated by the PDG for both CKM and PMNS matries.

⋆ Remember that the positioning of the fators in V

(D)

is not �xed by the Murnaghan (or any

other) algorithm and is just a subjet-matter of agreement.

⋆ Today we believe we know a lot about the entries of this matrix.



Sine the Dira mass term violates onservation of the individual lepton numbers Le, Lµ, vLτ ,

it allows many lepton family number violating proesses, like

µ± → e± + γ, µ± → e± + e+ + e−,

K+ → π+ + µ± + e∓, K− → π− + µ± + e∓,

µ− + (A,Z)→ e− + (A,Z), τ− + (A,Z)→ µ− + (A,Z), . . .

However the (ββ)0ν deay or the kaon semileptoni deays like

K+ → π− + µ+ + e+, K− → π+ + µ− + e−,

et. are still forbidden as a onsequene of the total lepton harge onservation.

Table 1: Current limits on the simplest lepton family number violating µ and τ deays.

[From K. Nakamura et al., (Partile Data Group), �Review of partile physis,� J. Phys. G 37 (2010) 075021 and

J. Adam et al. (MEG Collaboration), �New limit on the lepton-�avour violating deay µ+
→ e+γ�, arXiv:1107.5547

[hep-ex℄ (PSI-R-99-05 Experiment).℄.

Deay Modes Fration C.L. Deay Modes Fration C.L.

µ− → e−νeνµ < 1.2% 90% τ− → e−γ < 3.3× 10−8

90%

µ+ → e+γ < 2.4× 10−12

90% τ− → µ−γ < 4.4× 10−8

90%

µ− → e−e+e− < 1.0× 10−12

90% τ− → e−π0 < 8.0× 10−8

90%

µ− → 2γ < 7.2× 10−11
90% τ− → µ−π0 < 1.1× 10−7

90%

Some of the limits might seem impressive. But are they really so good?



Neutrinoless muon deay in SM

The Lµ and Le violating muon deay µ− → e−γ is al-

lowed if V ∗
µkVek 6= 0 for k = 1, 2 or 3. The orrespond-

ing Feynman diagrams inlude W loops and thus the

deay width is strongly suppressed by the neutrino to

W boson mass ratios:

R =
Γ
(
µ− → e−γ

)

Γ (µ− → e−νµνe)
=

3α

32π

∣∣∣∣∣
∑

k

V ∗
µkVek

m2
k

m2
W

∣∣∣∣∣

2

.

Sine mk/mW = 1.24× 10−11 (mk/1 eV), the ratio

an be estimated as

R ≈ 5.2× 10−48

∣∣∣∣∣
∑

k

V ∗
µkVek

( mk

1 eV

)2

∣∣∣∣∣

2

,

while the urrent experimental upper limit is (at least!)

35 orders of magnitude larger (see Table 1):

R

(exp)

< 2.4× 10−12

at 90% C.L. (NO GO!)

[Some nonstandard models are bit more optimisti.℄

We must deeply appreiate the osillation phenomenon

whih makes the miserable ν mass e�et measurable.

W W

γ

µ eν
k

V
µk V

ek

∗

Wγ

µ eν
k

V
µk V

ek

∗

W γ

µ eν
k

V
µk V

ek

∗



Majorana neutrinos

The harge onjugated bispinor �eld ψc

is de�ned by the transformation

ψ 7−→ ψc = CψT , ψ 7−→ ψc = −ψTC,

where C is the harge-onjugation matrix whih satis�es the onditions

CγT
αC

† = −γα, CγT
5 C

† = γ5, C† = C−1 = C, CT = −C,

and thus oinides (up to a phase fator) with the inversion of the axes x0 and x2:

C = γ0γ2 =

(
0 σ2

σ2 0

)

Reminder: Pauli & Dira matries.

σ0 ≡ 1 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

γ0 = γ0 =

(
σ0 0
0 −σ0

)
, γk = −γk =

(
0 σk

−σk 0

)
, k = 1, 2, 3, γ5 = γ5 = −

(
0 σ0

σ0 0

)
.

Clearly a harged fermion �eld ψ(x) is di�erent from the harge-onjugated �eld ψc(x).

But a neutral fermion �eld an oinide with the harge-onjugated �eld.



In other words: for a neutral fermion �eld ν(x) the following equality is not forbidden:

νc(x) = ν(x) (Majorana ondition) (2)

Majorana neutrino and antineutrino oinide.

�Everything whih is not forbidden is allowed...�

a =⇒ The real νs ould be Majorana νs.

A few more details: In the hiral representation

ν =

(
φ
χ

)
, νc = CνT =

(
−σ2χ

∗

+σ2φ
∗

)
.

(2) =⇒ φ = −σ2χ
∗

and χ = σ2φ
∗ =⇒ φ+ χ = σ2 (φ− χ)

∗,

The Majorana neutrino is two-omponent, i.e. needs only one hiral projetion. Then

νL =

(
1 + γ5

2

)
ν =

(
φ− χ
χ− φ

)

and νR =

(
1− γ5

2

)
ν =

(
φ+ χ
φ+ χ

)
= νcL.

⇓

ν = νL + νR = νL + νcL.

The simplest generalization of Eq. (2), νc(x) = eiϕν(x) (ϕ = onst), is not very interesting.

a

It is a onstitutional priniple of English law and not a law of Nature. In some other ountries, it

an be slightly orreted as, e.g., �Everything is forbidden, even that whih is expressly allowed.�



The Majorana mass term in the general N -neutrino ase is [Gribov & Ponteorvo (1969)℄:

L

M

(x) = −
1

2
ν
c
L(x)M

M

νL(x) + H..,

Here M

M

is a N ×N omplex nondiagonal matrix and, in general, N ≥ 3.

It an be proved that the M

M

should be symmetri, M
T

M

= M

M

. Assuming for simpliity that

its spetrum is non-degenerated, the mass matrix an be diagonalized by means of the

following transformation [Bilenky & Petov (1987)℄

M

M

= V
∗
mV

†, m = ||mkδkl|| = diag (m1,m2, . . . ,mN ),

where V is a unitary matrix and mk ≥ 0. Therefore

L

M

(x) = −
1

2

[
(ν′

L)
c
mν

′
L + ν ′

Lm(ν ′
L)

c] = −1

2
ν′mν

′ = −
1

2

N∑

k=1

mkνkνk,

ν
′
L = V

†
νL, (ν′

L)
c = C

(
ν ′
L

)
T , ν

′ = ν
′
L + (ν′

L)
c.

The last equality means that the �elds νk(x) are Majorana neutrino �elds. Considering that

the kineti term in the neutrino Lagrangian is transformed to

L0 =
i

4
ν′(x)

←→
∂ ν

′(x) =
i

4

∑

k

νk(x)
←→
∂ νk(x),

one an onlude that νk(x) is the �eld with the de�nite mass mk.



The �avor LH neutrino �elds νℓ,L(x) present in the standard weak lepton urrents are

linear ombinations of the LH omponents of the �elds of neutrinos with de�nite

masses:

νL = Vν
′

L or νℓ,L =
∑

k

Vℓkνk,L.

Of ourse neutrino mixing matrix V is not the same as in the ase of Dira neutrinos.

There is no global gauge transformations under whih the Majorana mass term (in its

most general form) ould be invariant. This implies that there are no onserved lepton

harges that ould allow us to distinguish Majorana νs and νs. In other words,

Majorana neutrinos are truly neutral fermions.

Parametrization of mixing matrix for Majorana neutrinos

Sine the Majorana neutrinos are not rephasable, there may be a lot of extra phase

fators in the mixing matrix. The Lagrangian with the Majorana mass term is invariant

with respet to the transformation

ℓ 7→ eiaℓℓ, Vℓk 7→ e−iaℓVℓk



Therefore N phases are unphysial and the number of the physial phases now is

N(N + 1)

2
−N =

N(N − 1)

2
=

(N − 1)(N − 2)

2
︸ ︷︷ ︸

Dira phases

+ (N − 1)
︸ ︷︷ ︸

Majorana phases

= n

D

+ n

M

;

n

M

(2) = 1, n

M

(3) = 2, n

M

(4) = 3, . . .

In the ase of three lepton generations one de�nes the diagonal matrix with the extra

phase fators: Γ

M

= diag

(
eiα1/2, eiα2/2, 1

)
, where α1,2 are ommonly referred to as

the Majorana CP-violation phases. Then the PMNS matrix an be parametrized as

V

(M)

= O23Γ

D

O13Γ
†

D

O12Γ

M

= V

(D)

Γ

M

=




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13





eiα1/2 0 0

0 eiα2/2 0
0 0 1


 .

Neither Lℓ nor L =
∑

ℓ Lℓ is onserved allowing a lot of new proesses, for example,

τ− → e+(µ+)π−π−

, τ− → e+(µ+)π−K−

, π− → µ+νe, K
+ → π−µ+e+, K+ → π0e+νe,

D+ → K−µ+µ+

, B+ → K−e+µ+

, Ξ− → pµ−µ−

, Λ+
c → Σ−µ+µ+

, et.

No one was disovered yet but (may be!?) the (ββ)0ν deay (Heidelberg-Mosow experiment).



See-saw mehanism

Dira-Majorana mass term for one generation

It is possible to onsider mixed models in whih both Majorana and Dira mass terms are

present. For simpliity sake we'll start with a toy model for one lepton generation.

Let us onsider a theory ontaining two independent neutrino �elds νL and νR:




νL would generally represent any ative neutrino (e.g., νL = νeL),

νR an represents a right handed �eld unrelated to any of these or

it an be harge onjugate of any of the ative neutrinos (e.g., νR = (νµL)
c

).

We an write the following generi mass term between νL and νR:

Lm = − mD νLνR︸ ︷︷ ︸

Dira mass term

− (1/2) [mL νLν
c
L +mR ν

c
RνR]︸ ︷︷ ︸

Majorana mass term

+H.. (3)

⋆ As we know, the Dira mass term respets L while the Majorana mass term violates it.

⋆ The parameter mD in Eq. (3) is in general omplex; to simplify matters, we'll assume it to

be real but not neessarily positive.

⋆ The parameters mL, and mR in Eq. (3) an be hosen real and (by an appropriate

rephasing the �elds νL and νR) non-negative, but the latter is not assumed.

⋆ Obviously, neither νL nor νR is a mass eigenstate.



In order to obtain the mass basis we an apply the useful identity

νLνR = (νR)
c(νL)

c

(4)

The identity (4) is a partiular ase of the more general relation

ψ1Γψ2 = ψ
c
2CΓ

TC−1ψc
1,

in whih ψ1,2 are Dira spinors and Γ represents an arbitrary ombination of the Dira γ matries.

Relation (4) allows us to rewrite Eq. (3) as follows

Lm = −
1

2
(νL, (νR)

c)

(
mL mD

mD mR

)(
(νL)

c

νR

)
+ H.. ≡ −

1

2
νLM (νL)

c + H..

If (again for simpliity) CP onservation is assumed the matrix M an be diagonalized by the

orthogonal transformation that is rotation

V =

(
cos θ sin θ
− sin θ cos θ

)

with θ =
1

2
arctan

(
2mD

mR −mL

)
.

and we have

V
T
MV = diag(m1,m2),

where m1,2 are eigenvalues of M given by

m1,2 =
1

2

(
mL +mR ±

√
(mL −mR)2 + 4m2

D

)
.



Sine mD,L,R are real, the eigenvalues are real but not neessarily positive. Let's de�ne

ζk = signmk

and rewrite the mass term in the new basis:

Lm = −
1

2
[ζ1 |m1| ν1L (ν1L)

c + ζ2 |m2| (ν2R)
c ν2R] + H.., (5)

The new �elds ν1L and ν2R represent hiral omponents of two di�erent neutrino states with

�masses� m1 and m2, respetively:

(
νL
νcR

)
= V

(
ν1L
νc2R

)
=⇒

{
ν1L= cos θ νL − sin θ νcR,

ν2R= sin θ νcL + cos θ νR.

Now we de�ne two 4-omponent �elds

ν1 = ν1L + ζ1 (ν1L)
c

and ν2 = ν2R + ζ2 (ν2R)
c.

Certainly, these �elds are self-onjugate with respet to the C transformation:

νck = ζkνk (k = 1, 2)

and therefore they desribe Majorana neutrinos. In terms of these �elds Eq. (5) reads

Lm = −
1

2
(|m1| ν1ν1 + |m2| ν2ν2). (6)

We therefore onlude that νk(x) is the Majorana neutrino �eld with the de�nite (physial)

mass |mk|.



There are several speial ases of the Dira-Majorana mass matrix M whih are of

onsiderable phenomenologial importane, in partiular,

(A): M =

(
0 m
m 0

)
=⇒ |m1,2| = m, θ =

π

4

(maximal mixing).

Two Majorana �elds are equivalent to one Dira �eld.

A generalization |mL,R| ≪ |mD|, leads to the so-alled

Pseudo-Dira neutrinos.

(B): M =

(
mL m
m mL

)
=⇒ m1,2 = mL ±mD, θ =

π

4

(maximal mixing);

(C): M =

(
0 m
m M

)

or, more generally, |mL| ≪ |mR|, mD > 0.

The see-saw

The ase (C) with m≪M is the simplest example of the see-saw mehanism. It leads to two

masses, one very large, m1 ≈M , other very small, m2 ≈ −m
2/M ≪ m, suppressed ompared

to the entries in M. In partiular, one an assume

m ∼ mℓ or mq (0.5 MeV to 200 GeV) and M ∼M

GUT

∼ 1015−16

GeV.

Then |m2| an ranges from ∼ 10−14
eV to ∼ 0.04 eV. The mixing between the heavy and light

neutrinos is extremely small: θ ≈ m/M ∼ 10−20 − 10−13
≪ 1.



If one eigenvalue goes up, the other

goes down, and vie versa. This is

the reason of the term see-saw...

a bit intriate for so simple idea...

�
1

�
2

<m <<M<

m  ~ M ~ M1 GUT

|m | ~ m /M
2

ν

ν



More neutral fermions

A generalization of the above sheme to N generations is almost straightforward but

tehnially rather umbersome. Let's onsider it shematially for the N = 3 ase.

⊲ If neutral fermions are added to the set of the SM �elds, then the �avour neutrinos an

aquire mass by mixing with them.

⊲ The additional fermions an be

a

• Gauge hiral singlets per family N (e.g., right-handed neutrinos) [Type I seesaw℄, or

• SU(2)× U(1) doublets (e.g., Higgsino in SUSY), or

• Y = 0, SU(2)L triplets Σ (e.g., Wino in SUSY) [Type III seesaw℄.

⊲ Addition of three right-handed neutrinos NiR leads to the see-saw mehanism with the

following mass terms:

Lm = −
∑

ij

[
νiLM

D
ijNjR −

1

2
(NiR)

cMR
ijNjR + H..

]
.

⊲ The above equation leads to the following 6× 6 see-saw mass matrix:

M =

(
0 m

T
D

mD MR

)
.

Both mD and mR are 3× 3 matries in the generation spae.

a

Type II seesaw operates with additional SU(2)L salar triplets ∆.



Similar to the one-generation ase we assume that the eigenvalues of mR are large in

omparison with the eigenvalues of mD. Then M an be approximately blok-diagonalized by

an unitary transformation:

U
†
MU = diag (M1,M2) +O

(
mDM

−1

R

)
,

where

U =


1 +

1

2
m

†
D

(
MRM

†
R

)−1

mD m
†
D

(
M

†
R

)−1

−M−1

R mD 1 +
1

2
M

−1

R mDm
†
D

(
M

†
R

)−1


.

M1 ≃ −m
T
DM

−1

R mD and M2 ≃MR.

The mass eigen�elds are surely Majorana neutrinos.

• Quadrati see-saw: If eigenvalues of MR are of the order of a large sale parameter

M ∼M

GUT

a

[e.g., MR =M1℄ than the standard neutrino masses are suppressed:

mi ∼
m2

Di

M
≪ mDi,

Here mDi ∼ Yi〈H〉 are the eigenvalues of mD. As long as these eigenvalues (or Yukawa

ouplings Yi) are hierarhial, the Majorana neutrino masses display quadrati hierarhy:

m1 : m2 : m3 ∝ m
2
D1 : m2

D2 : m2
D3.

a

Large M is natural in, e.g., SO(10) inspired GUT theories whih therefore provide a nie framework

to understand small neutrino masses [see, e.g., poster presentation by Rohit Verma et al. in this Shool.℄



• Linear see-saw: In a more speial ase, MR = (M/MD)MD, where MD is the generi

sale of the harged fermion masses than

mi ∼
MDmDi

M
≪ mDi

but the hierarhy is linear:

m1 : m2 : m3 ∝ mD1 : mD2 : mD3.

The two mentioned possibilities are, in priniple, experimentally distinguishable.



Double see-saw & inverse see-saw

The see-saw an be implemented by introduing additional neutrino singlets beyond the

three RH neutrinos involved into the see-saw type I. One have to distinguish between

• RH neutrinos νR, whih arry B − L and perhaps (not neessary) form SU(2)R

doublets with RH harged leptons, and

• Neutrino singlets νS , whih have no Yukawa ouplings to the LH neutrinos but

may ouple to νR.

If the singlets have nonzero Majorana masses MSS while the RH neutrinos have a zero

Majorana mass, MRR = 0, the see-saw mehanism may proeed via mass ouplings of

the singlets to RH neutrinos, MRS . In the basis (νL,νR,νS), the 9× 9 mass matrix is





0 mLR 0

mLR 0 MRS

0 M
T
RS MSS



.

Assuming that the eigenvalues of MSS are muh smaller than the eigenvalues of MRS,

the light physial LH Majorana neutrino masses are then doubly suppressed,

M1 ≃ mLRM
−1
RSMSS

(
M

T
RS

)−1
m

T
LR, M

2
2 ≃ M

2
RS +m

2
LR.

This senario is usually used in string inspired models [see, e.g., R.N.Mohapatra & J.W.Valle,

Phys. Rev. D 34 (1986) 1642; M.C.Gonzalez-Garia & J.W.F.Valle, Phys. Lett. B 216 (1989) 360℄.



Radiative see-saw

An alternative mehanism relies on the radiative generation of neutrino masses [H.Georgi &

S.L.Glashow, Phys. Rev. D 7 (1973) 2487; P.Cheng & L.-F.Li, Phys. Rev. D 17 (1978) 2375; Phys. Rev. D 22

(1980) 2860; A.Zee, Phys. Lett. B 93 (1980) 389;. . ..℄ In this sheme, the neutrinos are massless at

the tree level, but pik up small masses due to loop orretions.

In a typial model [K.S. Babu & V.S.

Mathur, Phys. Rev. D 11 (1988) 3550℄ the

see-saw formula is modi�ed as

mν ∼
(α
π

) m2
l

M
,

where the prefator α/π ≈ 2× 10−3

arises due to the loop struture of the

neutrino mass diagram. Light neutri-

nos are now possible even for relatively

�light� mass saleM of �new physis.�

The salar setor onsists of the multi-

plets

νL νLℓR ℓL

η
L
+Φ1

+

<Φ >1
0

<χ >
L

0 <χ >
R

0

χL,R =
(

χ+, χ0
)

L,R
, Φ =

(

Φ0
1 Φ+

2

Φ−
1

Φ0
2

)

, η+L,R.

The diagram in the �gures is responsible for generation of Majorana masses for νL. The analogous

diagram is obtained by the replaement L→ R and Φ+
1 → Φ+

2 .



Beyond this leture

✦ SUSY & SUGRA see-saw

✦ TeV see-saw & Large Extra Dimensions

✦ Dira see-saw

✦ Top (top-bottom) see-saw

✦ See-saw & Dark Matter

✦ See-saw & Leptogenesis

✦ ...

Conlusions [are not atually validated℄

• The �mainstream� neutrino mass models, de�ned as see-saw models, are apable of

desribing the atmospheri�reator�aelerator neutrino osillation data, the LMA

MSW solar neutrino solution, and osmologial limits.

• The Standard Model and the Minimal Supersymmetri Standard Model may

naturally be extended to inorporate the see-saw mehanism.

• [A �y in the ointment℄ Wealth of the models (≫ number of the authors of the

models) greatly ompliates the hoie of the best one.





Bi-unitary diagonalization

Let's prove that any nonsingular matrix M an be diagonalized by a bi-unitary transformation.

Proof. Sine MM
†

is Hermitian, there exist a unitary matrix V suh that

V
†
(
MM

†
)
V = m

2 = diag

(
m2

1,m
2
2, . . . ,m

2
N

)
,

where m2
i are real for any i. Moreover m2

i > 0. Indeed, M†
V =

(
V

†
M

)†

and thus

m2
i =

∑

j

(
V

†
M

)

ij

(
V

†
M

)∗

ij
=

∑

j

∣∣∣∣
(
V

†
M

)

ij

∣∣∣∣
2

≥ 0;

the equality is however exluded sine m
2

is nonsingular. Let's now de�ne the matrix

Ṽ = M
†
Vm

−1.

⇓

Ṽ
† = m

−1
V

†
M

⇓

Ṽ
†
Ṽ = m

−1
V

†
MM

†
Vm

−1 = m
−1

m
2
m

−1 = 1,

that is Ṽ is unitary and

V
†
MṼ = m.

Q.E.D.



TeV-sale gauged B − L symmetry with Inverse see-saw

Consider brie�y one more inverse see-saw model [S.Khalil, Phys. Rev. D 82 (2010) 077702℄.

The model is based on the following:

(i) The SM singlet Higgs boson, whih breaks the B − L gauge symmetry, has B − L unit

harge.

(ii) The SM singlet fermion setor inludes two singlet fermions S± with B − L harges ±2

with opposite matter parity.

The Lagrangian of neutrino masses, in the �avor basis, is given by

νLmDνR + ν
c
RMNS− + µsS−S−.

In the limit µs → 0, whih orresponds to the unbroken (−1)L+S
symmetry, the light

neutrinos remain massless. Therefore, a small nonvanishing µs an be onsidered as a slight

breaking of a this global symmetry and the smallness of µs is natural. Small µs an also be

generated radiatively.

In the basis (νL,ν
c
R,S−), the 9× 9 mass matrix is




0 mD 0

m
T
D 0 MN

0 M
T
N µs


.

So, up to the notation, it reprodues all the properties of the double see-saw.


