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Intera
tion Lagrangian and weak 
urrents

In the Standard Model (SM), the 
harged and neutral 
urrent neutrino intera
tions are

des
ribed by the following parts of the full Lagrangian:

LCC

I (x) = − g

2
√
2
jCCα (x)Wα(x) + H.
. and LNC

I (x) = − g

2 cos θ

W

jNCα (x)Zα(x).

Here g is the SU(2) (ele
tro-weak) gauge 
oupling 
onstant

g2 = 4
√
2m2

WGF , g sin θ

W

= |e|

and θ

W

is the weak mixing (Weinberg) angle (sin2 θ

W

(MZ) = 0.23120).

The leptoni
 
harged 
urrent and neutrino neutral 
urrent are given by the expressions:

jCCα (x) = 2
∑

ℓ=e,µ,τ,...

νℓ,L(x)γαℓL(x) and jNCα (x) =
∑

ℓ=e,µ,τ,...

νℓ,L(x)γανℓ,L(x).

The 
urrents may in
lude (yet unknown) heavy neutrinos and 
orresponding 
harged

leptons. The left- and right-handed fermion �elds are de�ned as usually:

νℓ,L/R(x) =

(
1± γ5

2

)

νℓ(x) and ℓL/R(x) =

(
1± γ5

2

)

ℓ(x).



Note that the kineti
 term of the Lagrangian in
ludes both L and R handed neutrinos and

moreover, it 
an in
lude other sterile neutrinos:

L0 =
i

2
[ν(x)γα∂αν(x)− ∂αν(x)γ

αν(x)] ≡
i

2
ν(x)
←→
∂ ν(x)

=
i

2

[
νL(x)

←→
∂ νL(x) + νR(x)

←→
∂ νR(x)

]
,

ν(x) = νL(x) + νR(x) =




νe(x)
νµ(x)
ντ (x)
.
.
.



, νL/R(x) =




νe,L/R(x)
νµ,L/R(x)
ντ,L/R(x)

.

.

.




=
1± γ5

2




νe(x)
νµ(x)
ντ (x)
.
.
.



.

Neutrino 
hirality: γ5νL = −νL and γ5νR = +νR.

The Lagrangian of the theory with massless neutrinos is invariant with respe
t to the global

gauge transformations

νℓ(x)→ eiΛℓνℓ(x), ℓ(x)→ eiΛℓℓ(x) with Λℓ = 
onst.

This leads (through 1st Noether's theorem) to 
onservation of the individual lepton �avor

numbers Lℓ (ele
tron, muon, tauon, et
.). It is not the 
ase for massive neutrinos.

There are two types of possible neutrino mass terms: Dira
 and Majorana.



Dira
 neutrinos

The 
onventional Dira
 mass term for a single spinor �eld ψ(x) is well known:

−mψ(x)ψ(x) = −m
[
ψR(x)ψL(x) + ψL(x)ψR(x)

]
= −mψR(x)ψL(x) + H.
.

The most general extension of this 
onstru
tion to the N -generation Dira
 neutrino 
ase reads:

L

D

(x) = −νR(x)M

D

νL(x) + H.
.,

where M

D

is a nonsingular [to ex
lude massless neutrinos℄ 
omplex N ×N matrix.

In general, N ≥ 3 sin
e the 
olumn νL may in
lude both a
tive and sterile neutrino �elds whi
h

do not enter into the standard 
harged and neutral 
urrents.

Any nonsingular 
omplex matrix 
an be diagonalized by means of an appropriate bi-unitary

transformation

M

D

= ṼmV
†, m = ||mkδkl|| = diag (m1,m2, . . . ,mN ),

where V and Ṽ are unitary matri
es and mk ≥ 0. Therefore

L

D

(x) = −ν′
R(x)mν

′
L(x) + H.
. = −ν ′(x)mν

′(x) = −
N∑

k=1

mkνk(x)νk(x),

where the new �elds νk are de�ned by

ν
′
L(x) = V

†
νL(x), ν

′
R(x) = Ṽ

†
νR(x), ν

′(x) = (ν1, ν2, . . . , νN )T .

The �elds ν
′
R(x) do not enter into LI =⇒ the matrix Ṽ remains out of play...



Sin
e

VV
† = V

†
V = 1 and Ṽ

†
Ṽ = Ṽ

†
Ṽ = 1

the neutrino kineti
 term in the Lagrangian is transformed to

L0 =
i

2

[
ν′L(x)

←→
∂ ν′L(x) + ν′R(x)

←→
∂ ν′R(x)

]
=
i

2
ν′(x)

←→
∂ ν

′(x) =
i

2

∑

k

νk(x)
←→
∂ νk(x).

⇓

νk(x) is the �eld of a Dira
 neutrino with the mass mk and the �avor LH neutrino �elds

νℓ,L(x) involved into the SM weak lepton 
urrents are linear 
ombinations of the LH


omponents of the �elds of the neutrinos with de�nite masses:

νL = Vν
′
L or νℓ,L =

∑

k

Vℓkνk,L.

The matrix V is referred to as the Ponte
orvo-Maki-Nakagawa-Sakata (PMNS) neutrino

mixing matrix while the matrix Ṽ is not honored with a personal name.

Quark-lepton 
omplementarity (QLC): Of 
ourse the PMNS matrix it is not the same as the

CKM (Cabibbo-KobayashiMaskawa) quark mixing matrix. However the PMNS and CKM matri
es

may be, in a sense, 
omplementary to ea
h other.

The QLC means that in the same (PDG) parametrizations the (small) quark and (large) lepton

mixing angles satisfy the empiri
al (perhaps a

idental) relations:

θCKM12 + θPMNS

12 ≃ π/4, θCKM23 + θPMNS

23 ≃ π/4.



Parametrization of mixing matrix for Dira
 neutrinos

It is well known that a 
omplex n× n unitary matrix depends on n2

real parameters.

The 
lassi
al result by Fran
is Murnaghan [F. D. Murnaghan, �The unitary and rotation groups (Le
tures

on Applied Mathemati
s, Volume 3),� Spartan Books, Washington, D.C. (1962)℄ states that any n× n

matrix from the unitary group U(n) 
an be presented as produ
t of the diagonal phase matrix

Γ = diag

(
eiα1 , eiα2 , . . . , eiαn

)
,


ontaining n phases αk, and n(n− 1)/2 matri
es U whose main building blo
ks have the form

(
cos θ sin θ e−iφ

− sin θ e+iφ cos θ

)
=

(
1 0

0 e+iφ

)(
cos θ sin θ
− sin θ cos θ

)

︸ ︷︷ ︸

Euler rotation

(
1 0

0 e−iφ

)
.

Therefore any n× n unitary matrix 
an be parametrized in terms of

n(n− 1)/2 �angles� (taking values within [0, π/2])

and

n(n+ 1)/2 �phases� (taking values within [0, 2π)).

The usual parametrization of both the CKM and PMNS matri
es is of this type.

IMPORTANT: Murnaghan's fa
torization method does not spe
ify the sequen
e of the

building blo
ks Γ and U.



One 
an redu
e the number of the phases further by taking into a

ount that the

Lagrangian with the Dira
 mass term is invariant with respe
t to the transformation

ℓ 7→ eiaℓℓ, νk 7→ eibkνk, Vℓk 7→ ei(bk−aℓ)Vℓk,

and to the global gauge transformation

ℓ 7→ eiΛℓ, νk 7→ eiΛνk, with Λ = 
onst. (1)

Therefore 2N − 1 phases are unphysi
al and the number of physi
al (Dira
) phases is

n

D

=
N(N + 1)

2
− (2N − 1) =

N2 − 3N + 2

2
=

(N − 1)(N − 2)

2
(N ≥ 2);

n

D

(2) = 0, n

D

(3) = 1, n

D

(4) = 3, . . .

• The global symmetry (1) leads to 
onservation of the lepton 
harge

L =
∑

ℓ=e,µ,τ,...

Lℓ


ommon to all 
harged leptons and all neutrinos νk. However

The individual lepton �avor numbers Lℓ are no longer 
onserved.

• The nonzero physi
al phases lead to the CP and T violation in the neutrino se
tor.



Three-neutrino 
ase

In the most interesting (today!) 
ase of three lepton generations one de�nes the orthogonal

rotation matri
es in the ij-planes whi
h depend upon the mixing angles θij :

O12 =



c12 s12 0
−s12 c12 0
0 0 1




︸ ︷︷ ︸

Solar matrix

, O13 =



c13 0 s13
0 1 0
−s13 0 c13




︸ ︷︷ ︸

Rea
tor matrix

, O23 =



1 0 0
0 c23 s23
0 −s23 c23




︸ ︷︷ ︸

Atmospheri
 matrix

,

(where cij ≡ cos θij , sij ≡ sin θij) and the diagonal matrix with the Dira
 phase fa
tor:

Γ

D

= diag

(
1, 1, eiδ

)
.

The parameter δ is 
ommonly referred to as the Dira
 CP-violation/violating phase.

Finally, by applying Murnaghan's fa
torization, the PMNS matrix for the Dira
 neutrinos 
an

be parametrized as

V

(D)

= O23Γ

D

O13Γ
†

D

O12 =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13


 .

⋆ This is the Chau�Keung presentation advo
ated by the PDG for both CKM and PMNS matri
es.

⋆ Remember that the positioning of the fa
tors in V

(D)

is not �xed by the Murnaghan (or any

other) algorithm and is just a subje
t-matter of agreement.

⋆ Today we believe we know a lot about the entries of this matrix.



Sin
e the Dira
 mass term violates 
onservation of the individual lepton numbers Le, Lµ, vLτ ,

it allows many lepton family number violating pro
esses, like

µ± → e± + γ, µ± → e± + e+ + e−,

K+ → π+ + µ± + e∓, K− → π− + µ± + e∓,

µ− + (A,Z)→ e− + (A,Z), τ− + (A,Z)→ µ− + (A,Z), . . .

However the (ββ)0ν de
ay or the kaon semileptoni
 de
ays like

K+ → π− + µ+ + e+, K− → π+ + µ− + e−,

et
. are still forbidden as a 
onsequen
e of the total lepton 
harge 
onservation.

Table 1: Current limits on the simplest lepton family number violating µ and τ de
ays.

[From K. Nakamura et al., (Parti
le Data Group), �Review of parti
le physi
s,� J. Phys. G 37 (2010) 075021 and

J. Adam et al. (MEG Collaboration), �New limit on the lepton-�avour violating de
ay µ+
→ e+γ�, arXiv:1107.5547

[hep-ex℄ (PSI-R-99-05 Experiment).℄.

De
ay Modes Fra
tion C.L. De
ay Modes Fra
tion C.L.

µ− → e−νeνµ < 1.2% 90% τ− → e−γ < 3.3× 10−8

90%

µ+ → e+γ < 2.4× 10−12

90% τ− → µ−γ < 4.4× 10−8

90%

µ− → e−e+e− < 1.0× 10−12

90% τ− → e−π0 < 8.0× 10−8

90%

µ− → 2γ < 7.2× 10−11
90% τ− → µ−π0 < 1.1× 10−7

90%

Some of the limits might seem impressive. But are they really so good?



Neutrinoless muon de
ay in SM

The Lµ and Le violating muon de
ay µ− → e−γ is al-

lowed if V ∗
µkVek 6= 0 for k = 1, 2 or 3. The 
orrespond-

ing Feynman diagrams in
lude W loops and thus the

de
ay width is strongly suppressed by the neutrino to

W boson mass ratios:

R =
Γ
(
µ− → e−γ

)

Γ (µ− → e−νµνe)
=

3α

32π

∣∣∣∣∣
∑

k

V ∗
µkVek

m2
k

m2
W

∣∣∣∣∣

2

.

Sin
e mk/mW = 1.24× 10−11 (mk/1 eV), the ratio


an be estimated as

R ≈ 5.2× 10−48

∣∣∣∣∣
∑

k

V ∗
µkVek

( mk

1 eV

)2

∣∣∣∣∣

2

,

while the 
urrent experimental upper limit is (at least!)

35 orders of magnitude larger (see Table 1):

R

(exp)

< 2.4× 10−12

at 90% C.L. (NO GO!)

[Some nonstandard models are bit more optimisti
.℄

We must deeply appre
iate the os
illation phenomenon

whi
h makes the miserable ν mass e�e
t measurable.

W W

γ

µ eν
k

V
µk V

ek

∗

Wγ

µ eν
k

V
µk V

ek

∗

W γ

µ eν
k

V
µk V

ek

∗



Majorana neutrinos

The 
harge 
onjugated bispinor �eld ψc

is de�ned by the transformation

ψ 7−→ ψc = CψT , ψ 7−→ ψc = −ψTC,

where C is the 
harge-
onjugation matrix whi
h satis�es the 
onditions

CγT
αC

† = −γα, CγT
5 C

† = γ5, C† = C−1 = C, CT = −C,

and thus 
oin
ides (up to a phase fa
tor) with the inversion of the axes x0 and x2:

C = γ0γ2 =

(
0 σ2

σ2 0

)

Reminder: Pauli & Dira
 matri
es.

σ0 ≡ 1 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

γ0 = γ0 =

(
σ0 0
0 −σ0

)
, γk = −γk =

(
0 σk

−σk 0

)
, k = 1, 2, 3, γ5 = γ5 = −

(
0 σ0

σ0 0

)
.

Clearly a 
harged fermion �eld ψ(x) is di�erent from the 
harge-
onjugated �eld ψc(x).

But a neutral fermion �eld 
an 
oin
ide with the 
harge-
onjugated �eld.



In other words: for a neutral fermion �eld ν(x) the following equality is not forbidden:

νc(x) = ν(x) (Majorana 
ondition) (2)

Majorana neutrino and antineutrino 
oin
ide.

�Everything whi
h is not forbidden is allowed...�

a =⇒ The real νs 
ould be Majorana νs.

A few more details: In the 
hiral representation

ν =

(
φ
χ

)
, νc = CνT =

(
−σ2χ

∗

+σ2φ
∗

)
.

(2) =⇒ φ = −σ2χ
∗

and χ = σ2φ
∗ =⇒ φ+ χ = σ2 (φ− χ)

∗,

The Majorana neutrino is two-
omponent, i.e. needs only one 
hiral proje
tion. Then

νL =

(
1 + γ5

2

)
ν =

(
φ− χ
χ− φ

)

and νR =

(
1− γ5

2

)
ν =

(
φ+ χ
φ+ χ

)
= νcL.

⇓

ν = νL + νR = νL + νcL.

The simplest generalization of Eq. (2), νc(x) = eiϕν(x) (ϕ = 
onst), is not very interesting.

a

It is a 
onstitutional prin
iple of English law and not a law of Nature. In some other 
ountries, it


an be slightly 
orre
ted as, e.g., �Everything is forbidden, even that whi
h is expressly allowed.�



The Majorana mass term in the general N -neutrino 
ase is [Gribov & Ponte
orvo (1969)℄:

L

M

(x) = −
1

2
ν
c
L(x)M

M

νL(x) + H.
.,

Here M

M

is a N ×N 
omplex nondiagonal matrix and, in general, N ≥ 3.

It 
an be proved that the M

M

should be symmetri
, M
T

M

= M

M

. Assuming for simpli
ity that

its spe
trum is non-degenerated, the mass matrix 
an be diagonalized by means of the

following transformation [Bilenky & Pet
ov (1987)℄

M

M

= V
∗
mV

†, m = ||mkδkl|| = diag (m1,m2, . . . ,mN ),

where V is a unitary matrix and mk ≥ 0. Therefore

L

M

(x) = −
1

2

[
(ν′

L)
c
mν

′
L + ν ′

Lm(ν ′
L)

c] = −1

2
ν′mν

′ = −
1

2

N∑

k=1

mkνkνk,

ν
′
L = V

†
νL, (ν′

L)
c = C

(
ν ′
L

)
T , ν

′ = ν
′
L + (ν′

L)
c.

The last equality means that the �elds νk(x) are Majorana neutrino �elds. Considering that

the kineti
 term in the neutrino Lagrangian is transformed to

L0 =
i

4
ν′(x)

←→
∂ ν

′(x) =
i

4

∑

k

νk(x)
←→
∂ νk(x),

one 
an 
on
lude that νk(x) is the �eld with the de�nite mass mk.



The �avor LH neutrino �elds νℓ,L(x) present in the standard weak lepton 
urrents are

linear 
ombinations of the LH 
omponents of the �elds of neutrinos with de�nite

masses:

νL = Vν
′

L or νℓ,L =
∑

k

Vℓkνk,L.

Of 
ourse neutrino mixing matrix V is not the same as in the 
ase of Dira
 neutrinos.

There is no global gauge transformations under whi
h the Majorana mass term (in its

most general form) 
ould be invariant. This implies that there are no 
onserved lepton


harges that 
ould allow us to distinguish Majorana νs and νs. In other words,

Majorana neutrinos are truly neutral fermions.

Parametrization of mixing matrix for Majorana neutrinos

Sin
e the Majorana neutrinos are not rephasable, there may be a lot of extra phase

fa
tors in the mixing matrix. The Lagrangian with the Majorana mass term is invariant

with respe
t to the transformation

ℓ 7→ eiaℓℓ, Vℓk 7→ e−iaℓVℓk



Therefore N phases are unphysi
al and the number of the physi
al phases now is

N(N + 1)

2
−N =

N(N − 1)

2
=

(N − 1)(N − 2)

2
︸ ︷︷ ︸

Dira
 phases

+ (N − 1)
︸ ︷︷ ︸

Majorana phases

= n

D

+ n

M

;

n

M

(2) = 1, n

M

(3) = 2, n

M

(4) = 3, . . .

In the 
ase of three lepton generations one de�nes the diagonal matrix with the extra

phase fa
tors: Γ

M

= diag

(
eiα1/2, eiα2/2, 1

)
, where α1,2 are 
ommonly referred to as

the Majorana CP-violation phases. Then the PMNS matrix 
an be parametrized as

V

(M)

= O23Γ

D

O13Γ
†

D

O12Γ

M

= V

(D)

Γ

M

=




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13





eiα1/2 0 0

0 eiα2/2 0
0 0 1


 .

Neither Lℓ nor L =
∑

ℓ Lℓ is 
onserved allowing a lot of new pro
esses, for example,

τ− → e+(µ+)π−π−

, τ− → e+(µ+)π−K−

, π− → µ+νe, K
+ → π−µ+e+, K+ → π0e+νe,

D+ → K−µ+µ+

, B+ → K−e+µ+

, Ξ− → pµ−µ−

, Λ+
c → Σ−µ+µ+

, et
.

No one was dis
overed yet but (may be!?) the (ββ)0ν de
ay (Heidelberg-Mos
ow experiment).



See-saw me
hanism

Dira
-Majorana mass term for one generation

It is possible to 
onsider mixed models in whi
h both Majorana and Dira
 mass terms are

present. For simpli
ity sake we'll start with a toy model for one lepton generation.

Let us 
onsider a theory 
ontaining two independent neutrino �elds νL and νR:




νL would generally represent any a
tive neutrino (e.g., νL = νeL),

νR 
an represents a right handed �eld unrelated to any of these or

it 
an be 
harge 
onjugate of any of the a
tive neutrinos (e.g., νR = (νµL)
c

).

We 
an write the following generi
 mass term between νL and νR:

Lm = − mD νLνR︸ ︷︷ ︸

Dira
 mass term

− (1/2) [mL νLν
c
L +mR ν

c
RνR]︸ ︷︷ ︸

Majorana mass term

+H.
. (3)

⋆ As we know, the Dira
 mass term respe
ts L while the Majorana mass term violates it.

⋆ The parameter mD in Eq. (3) is in general 
omplex; to simplify matters, we'll assume it to

be real but not ne
essarily positive.

⋆ The parameters mL, and mR in Eq. (3) 
an be 
hosen real and (by an appropriate

rephasing the �elds νL and νR) non-negative, but the latter is not assumed.

⋆ Obviously, neither νL nor νR is a mass eigenstate.



In order to obtain the mass basis we 
an apply the useful identity

νLνR = (νR)
c(νL)

c

(4)

The identity (4) is a parti
ular 
ase of the more general relation

ψ1Γψ2 = ψ
c
2CΓ

TC−1ψc
1,

in whi
h ψ1,2 are Dira
 spinors and Γ represents an arbitrary 
ombination of the Dira
 γ matri
es.

Relation (4) allows us to rewrite Eq. (3) as follows

Lm = −
1

2
(νL, (νR)

c)

(
mL mD

mD mR

)(
(νL)

c

νR

)
+ H.
. ≡ −

1

2
νLM (νL)

c + H.
.

If (again for simpli
ity) CP 
onservation is assumed the matrix M 
an be diagonalized by the

orthogonal transformation that is rotation

V =

(
cos θ sin θ
− sin θ cos θ

)

with θ =
1

2
arctan

(
2mD

mR −mL

)
.

and we have

V
T
MV = diag(m1,m2),

where m1,2 are eigenvalues of M given by

m1,2 =
1

2

(
mL +mR ±

√
(mL −mR)2 + 4m2

D

)
.



Sin
e mD,L,R are real, the eigenvalues are real but not ne
essarily positive. Let's de�ne

ζk = signmk

and rewrite the mass term in the new basis:

Lm = −
1

2
[ζ1 |m1| ν1L (ν1L)

c + ζ2 |m2| (ν2R)
c ν2R] + H.
., (5)

The new �elds ν1L and ν2R represent 
hiral 
omponents of two di�erent neutrino states with

�masses� m1 and m2, respe
tively:

(
νL
νcR

)
= V

(
ν1L
νc2R

)
=⇒

{
ν1L= cos θ νL − sin θ νcR,

ν2R= sin θ νcL + cos θ νR.

Now we de�ne two 4-
omponent �elds

ν1 = ν1L + ζ1 (ν1L)
c

and ν2 = ν2R + ζ2 (ν2R)
c.

Certainly, these �elds are self-
onjugate with respe
t to the C transformation:

νck = ζkνk (k = 1, 2)

and therefore they des
ribe Majorana neutrinos. In terms of these �elds Eq. (5) reads

Lm = −
1

2
(|m1| ν1ν1 + |m2| ν2ν2). (6)

We therefore 
on
lude that νk(x) is the Majorana neutrino �eld with the de�nite (physi
al)

mass |mk|.



There are several spe
ial 
ases of the Dira
-Majorana mass matrix M whi
h are of


onsiderable phenomenologi
al importan
e, in parti
ular,

(A): M =

(
0 m
m 0

)
=⇒ |m1,2| = m, θ =

π

4

(maximal mixing).

Two Majorana �elds are equivalent to one Dira
 �eld.

A generalization |mL,R| ≪ |mD|, leads to the so-
alled

Pseudo-Dira
 neutrinos.

(B): M =

(
mL m
m mL

)
=⇒ m1,2 = mL ±mD, θ =

π

4

(maximal mixing);

(C): M =

(
0 m
m M

)

or, more generally, |mL| ≪ |mR|, mD > 0.

The see-saw

The 
ase (C) with m≪M is the simplest example of the see-saw me
hanism. It leads to two

masses, one very large, m1 ≈M , other very small, m2 ≈ −m
2/M ≪ m, suppressed 
ompared

to the entries in M. In parti
ular, one 
an assume

m ∼ mℓ or mq (0.5 MeV to 200 GeV) and M ∼M

GUT

∼ 1015−16

GeV.

Then |m2| 
an ranges from ∼ 10−14
eV to ∼ 0.04 eV. The mixing between the heavy and light

neutrinos is extremely small: θ ≈ m/M ∼ 10−20 − 10−13
≪ 1.



If one eigenvalue goes up, the other

goes down, and vi
e versa. This is

the reason of the term see-saw...

a bit intri
ate for so simple idea...

�
1

�
2

<m <<M<

m  ~ M ~ M1 GUT

|m | ~ m /M
2

ν

ν



More neutral fermions

A generalization of the above s
heme to N generations is almost straightforward but

te
hni
ally rather 
umbersome. Let's 
onsider it s
hemati
ally for the N = 3 
ase.

⊲ If neutral fermions are added to the set of the SM �elds, then the �avour neutrinos 
an

a
quire mass by mixing with them.

⊲ The additional fermions 
an be

a

• Gauge 
hiral singlets per family N (e.g., right-handed neutrinos) [Type I seesaw℄, or

• SU(2)× U(1) doublets (e.g., Higgsino in SUSY), or

• Y = 0, SU(2)L triplets Σ (e.g., Wino in SUSY) [Type III seesaw℄.

⊲ Addition of three right-handed neutrinos NiR leads to the see-saw me
hanism with the

following mass terms:

Lm = −
∑

ij

[
νiLM

D
ijNjR −

1

2
(NiR)

cMR
ijNjR + H.
.

]
.

⊲ The above equation leads to the following 6× 6 see-saw mass matrix:

M =

(
0 m

T
D

mD MR

)
.

Both mD and mR are 3× 3 matri
es in the generation spa
e.

a

Type II seesaw operates with additional SU(2)L s
alar triplets ∆.



Similar to the one-generation 
ase we assume that the eigenvalues of mR are large in


omparison with the eigenvalues of mD. Then M 
an be approximately blo
k-diagonalized by

an unitary transformation:

U
†
MU = diag (M1,M2) +O

(
mDM

−1

R

)
,

where

U =


1 +

1

2
m

†
D

(
MRM

†
R

)−1

mD m
†
D

(
M

†
R

)−1

−M−1

R mD 1 +
1

2
M

−1

R mDm
†
D

(
M

†
R

)−1


.

M1 ≃ −m
T
DM

−1

R mD and M2 ≃MR.

The mass eigen�elds are surely Majorana neutrinos.

• Quadrati
 see-saw: If eigenvalues of MR are of the order of a large s
ale parameter

M ∼M

GUT

a

[e.g., MR =M1℄ than the standard neutrino masses are suppressed:

mi ∼
m2

Di

M
≪ mDi,

Here mDi ∼ Yi〈H〉 are the eigenvalues of mD. As long as these eigenvalues (or Yukawa


ouplings Yi) are hierar
hi
al, the Majorana neutrino masses display quadrati
 hierar
hy:

m1 : m2 : m3 ∝ m
2
D1 : m2

D2 : m2
D3.

a

Large M is natural in, e.g., SO(10) inspired GUT theories whi
h therefore provide a ni
e framework

to understand small neutrino masses [see, e.g., poster presentation by Rohit Verma et al. in this S
hool.℄



• Linear see-saw: In a more spe
ial 
ase, MR = (M/MD)MD, where MD is the generi


s
ale of the 
harged fermion masses than

mi ∼
MDmDi

M
≪ mDi

but the hierar
hy is linear:

m1 : m2 : m3 ∝ mD1 : mD2 : mD3.

The two mentioned possibilities are, in prin
iple, experimentally distinguishable.



Double see-saw & inverse see-saw

The see-saw 
an be implemented by introdu
ing additional neutrino singlets beyond the

three RH neutrinos involved into the see-saw type I. One have to distinguish between

• RH neutrinos νR, whi
h 
arry B − L and perhaps (not ne
essary) form SU(2)R

doublets with RH 
harged leptons, and

• Neutrino singlets νS , whi
h have no Yukawa 
ouplings to the LH neutrinos but

may 
ouple to νR.

If the singlets have nonzero Majorana masses MSS while the RH neutrinos have a zero

Majorana mass, MRR = 0, the see-saw me
hanism may pro
eed via mass 
ouplings of

the singlets to RH neutrinos, MRS . In the basis (νL,νR,νS), the 9× 9 mass matrix is





0 mLR 0

mLR 0 MRS

0 M
T
RS MSS



.

Assuming that the eigenvalues of MSS are mu
h smaller than the eigenvalues of MRS,

the light physi
al LH Majorana neutrino masses are then doubly suppressed,

M1 ≃ mLRM
−1
RSMSS

(
M

T
RS

)−1
m

T
LR, M

2
2 ≃ M

2
RS +m

2
LR.

This s
enario is usually used in string inspired models [see, e.g., R.N.Mohapatra & J.W.Valle,

Phys. Rev. D 34 (1986) 1642; M.C.Gonzalez-Gar
ia & J.W.F.Valle, Phys. Lett. B 216 (1989) 360℄.



Radiative see-saw

An alternative me
hanism relies on the radiative generation of neutrino masses [H.Georgi &

S.L.Glashow, Phys. Rev. D 7 (1973) 2487; P.Cheng & L.-F.Li, Phys. Rev. D 17 (1978) 2375; Phys. Rev. D 22

(1980) 2860; A.Zee, Phys. Lett. B 93 (1980) 389;. . ..℄ In this s
heme, the neutrinos are massless at

the tree level, but pi
k up small masses due to loop 
orre
tions.

In a typi
al model [K.S. Babu & V.S.

Mathur, Phys. Rev. D 11 (1988) 3550℄ the

see-saw formula is modi�ed as

mν ∼
(α
π

) m2
l

M
,

where the prefa
tor α/π ≈ 2× 10−3

arises due to the loop stru
ture of the

neutrino mass diagram. Light neutri-

nos are now possible even for relatively

�light� mass s
aleM of �new physi
s.�

The s
alar se
tor 
onsists of the multi-

plets

νL νLℓR ℓL

η
L
+Φ1

+

<Φ >1
0

<χ >
L

0 <χ >
R

0

χL,R =
(

χ+, χ0
)

L,R
, Φ =

(

Φ0
1 Φ+

2

Φ−
1

Φ0
2

)

, η+L,R.

The diagram in the �gures is responsible for generation of Majorana masses for νL. The analogous

diagram is obtained by the repla
ement L→ R and Φ+
1 → Φ+

2 .



Beyond this le
ture

✦ SUSY & SUGRA see-saw

✦ TeV see-saw & Large Extra Dimensions

✦ Dira
 see-saw

✦ Top (top-bottom) see-saw

✦ See-saw & Dark Matter

✦ See-saw & Leptogenesis

✦ ...

Con
lusions [are not a
tually validated℄

• The �mainstream� neutrino mass models, de�ned as see-saw models, are 
apable of

des
ribing the atmospheri
�rea
tor�a

elerator neutrino os
illation data, the LMA

MSW solar neutrino solution, and 
osmologi
al limits.

• The Standard Model and the Minimal Supersymmetri
 Standard Model may

naturally be extended to in
orporate the see-saw me
hanism.

• [A �y in the ointment℄ Wealth of the models (≫ number of the authors of the

models) greatly 
ompli
ates the 
hoi
e of the best one.





Bi-unitary diagonalization

Let's prove that any nonsingular matrix M 
an be diagonalized by a bi-unitary transformation.

Proof. Sin
e MM
†

is Hermitian, there exist a unitary matrix V su
h that

V
†
(
MM

†
)
V = m

2 = diag

(
m2

1,m
2
2, . . . ,m

2
N

)
,

where m2
i are real for any i. Moreover m2

i > 0. Indeed, M†
V =

(
V

†
M

)†

and thus

m2
i =

∑

j

(
V

†
M

)

ij

(
V

†
M

)∗

ij
=

∑

j

∣∣∣∣
(
V

†
M

)

ij

∣∣∣∣
2

≥ 0;

the equality is however ex
luded sin
e m
2

is nonsingular. Let's now de�ne the matrix

Ṽ = M
†
Vm

−1.

⇓

Ṽ
† = m

−1
V

†
M

⇓

Ṽ
†
Ṽ = m

−1
V

†
MM

†
Vm

−1 = m
−1

m
2
m

−1 = 1,

that is Ṽ is unitary and

V
†
MṼ = m.

Q.E.D.



TeV-s
ale gauged B − L symmetry with Inverse see-saw

Consider brie�y one more inverse see-saw model [S.Khalil, Phys. Rev. D 82 (2010) 077702℄.

The model is based on the following:

(i) The SM singlet Higgs boson, whi
h breaks the B − L gauge symmetry, has B − L unit


harge.

(ii) The SM singlet fermion se
tor in
ludes two singlet fermions S± with B − L 
harges ±2

with opposite matter parity.

The Lagrangian of neutrino masses, in the �avor basis, is given by

νLmDνR + ν
c
RMNS− + µsS−S−.

In the limit µs → 0, whi
h 
orresponds to the unbroken (−1)L+S
symmetry, the light

neutrinos remain massless. Therefore, a small nonvanishing µs 
an be 
onsidered as a slight

breaking of a this global symmetry and the smallness of µs is natural. Small µs 
an also be

generated radiatively.

In the basis (νL,ν
c
R,S−), the 9× 9 mass matrix is




0 mD 0

m
T
D 0 MN

0 M
T
N µs


.

So, up to the notation, it reprodu
es all the properties of the double see-saw.


