V International Pontecorvo Neutrino Physics School

Бруно Понтекоры

Neutrino-less double beta decay experiments

Part II

Stefan Schönert Technische Universität München

Table 3 Selection of	$0\nu\beta\beta$ experiments.
----------------------	-------------------------------

experiment	isotope	mass [kg]	method	start / end	ref.	
past experiments						
Heidelberg- Moscow	⁷⁶ Ge	11	ionization	-2003	[6]	
Cuoricino	¹³⁰ Te	11	bolometer	-2008	[40]	
NEMO-3	¹⁰⁰ Mo, ⁸² Se	7,1	track. +calorim.	-2011	[41]	
	С	urrent exp	eriments			
EXO-200	¹³⁶ Xe	175	liquid TPC	2011-	[2]	
Kamland- Zen	¹³⁶ Xe	330	liquid scintil.	2011-	[3]	Cobra
gerda-i/ gerda-ii	⁷⁶ Ge	15/35	ionization	2011-/ 2013-	[45]	Lucife
CANDLES	⁴⁸ Ca	0.35	scint. crystal	2011-	[46]	DCBA
funded experiments					MOO	
NEXT	¹³⁶ Xe	100	gas TPC	2015	[47]	AMoF
Cuore0/ Cuore	¹³⁰ Te	10/200	bolometer	2012- 2015-	[48]	Cd ex
Majorana Demo.	⁷⁶ Ge	30	ionization	2013	[49]	
SuperNEMO demo./total	⁸² Se	7/100	track.+calorin	2014- /??	[50]	
SNO+	¹⁵⁰ Nd	44	liquid scint.	2013	[51]	ents: Part

proposal, proto-typing					
Cobra	¹¹⁶ Cd		solid TPC	[52]	
Lucifer	⁸² Se		bolom. +scint.	[53]	
DCBA/MTD	¹⁵⁰ Nd	32	tracking	[54]	
MOON	⁸² Se, ¹⁰⁰ Mo	30- 480	track. +scint.	[55]	
AMoRE	¹⁰⁰ Mo	100	bolom. +scint.	[56]	
Cd exp.	¹¹⁶ Cd		scint.	[57]	

B. Schwingenheuer, Annalen der Physik, August 22, 2012

ISAPP Valencia 2008, S. Schönert, MPIK, Heidelberg

Plan for 2nd lecture

- Overview of experiments and R&D projects
- Discussion of
 - Nemo3/SuperNEMO
 - KamLAND-Zen
 - EXO
 - GERDA
 - Cuoricino/Cuore
 - Scintillating bolometers: Lucifer
- Outlook

Neutrino-less double beta decay experiments

Next generation experiments

Neutrino-less double beta decay experiments

Next generation experiments

Neutrino-less double beta decay experiments

NEMO 3

Tracking detector: drift chambers (6180 Geiger cells) σ_t = 5 mm, σ_z = 1 cm (vertex) Calorimeter (1940 plastic scintillators and PMTs) Energy Resolution FWHM=8 % (3 MeV)

Identification e⁻,e⁺, γ , α Very high efficiency for background rejection Background level @ $Q_{\beta\beta}$ [2.8 – 3.2 MeV] : 1.2 10⁻³ cts/keV/kg/y Multi-isotope (7 measured at the same time)

Running at Modane underground laboratory (2003 - 2011)

Unique feature Measurement of all kinematic parameters: individual energies and angular distribution

Measurement of 7 isotopes $\beta\beta(2\nu)$ half-lifes Excited states, Majoron limits for $\beta\beta(0\nu)$

From F. Piquemal, Neutrino 2012

Neutrino-less double beta decay experiments

SuperNEMO Demonstrator

Objective: to reach the background level for 100 kg to perform a no background experiment with 7 kg isotope of ⁸²Se in 2 yr

SuperNEMO

A module

	Demonstrator module	20 Modules
Source : ⁸² Se	7 kg	100 kg
Drift chambers for tracking	2 0000	40 000
Electron calorimeter	500	10 000
γ veto (up and down)	100	2 000
T _{1/2} sensitivity	6.6 10 ²⁴ y (No background)	1. 10 ²⁶ y
<m_> sensitivity</m_>	200 – 400 meV	40 – 100 meV

20 modules

Neutrino-less double beta decay experiments

From K. Inoue, Neutrino 2012

mini balloon fabrication

produced in a class 1 super-clean-room (class 1 = less than $1 \ 0.5$ -micron-particle in cubic feet)

developed heat welding

Neutrino-less double beta decay experiments

gores from the film

ilm part(~6m)

24 gores

Installation in a class 10~100 clean room built at the top of KamLAND

balloon and corrugated tube deployment

balloon went through the black sheet

mini-balloon surface

welding lines -

\$ supply tube

mini-balloon inflated with dummy LS and then replaced with Xe-loaded LS density tuning finished and tubes to be extracted

vertex resolution from balloon events $\sim 15 \text{cm}/\sqrt{E}$

Fiducial volume of Xe-LS R < 1.2 m V = 7.24 m³ 1:28:11.089 Xe isotopic abundance 🕬 ¹³⁶Xe : 90.93%. ľ ¹³⁴Xe : 8.89% Xe amount by weight measurement (supplied)-(returned) Xe concentration = (2.44 ± 0.01) wt% consistent direct gas chromatography analysis - Xe concentration = (2.52 ± 0.07) wt% Uncertainty of the fiducial volume ²¹⁴Bi vertex uniformity check $V_{1,2m}$ / V_{total} = 0.438 ± 0.005 $N_{1.2m} / N_{total} = 0.423 \pm 0.007(stat) \pm 0.004(syst)$ FV uncertainty $\rightarrow 5.2\%$ dominant error

Xe amount in the fiducial volume 125±7 kg of ¹³⁶Xe in the FV

Neutrino-less double beta decay experiments

V Pontecorvo Neutrino Phyiscs School 2012, S. Schönert, TU München

8

KamLAND-Zen: energy spectrum

update 2011 10/12~2012 2/9 112.3 days 38.6kg-yr

Measurement of the $2\nu 2\beta$ half life

10

Background situation

Peak fit with 0V signal

Peak position is different from that of expected 0V. 0V only is rejected at more than 8σ level. From K. Inoue, Neutrino 2012

Limit on the $0v2\beta$ half life

N.B.: limit depends on correctness of background model

Neutrino-less double beta decay experiments

The EXO-200 TPC

- 38 U triplet wire channels (charge)
- 38V triplet wire channels, crossed at 60° (induction)
- 234 large area avalanche photodiodes (APDs, light in groups of 7)
- Wire pitch 3 mm (9 mm per channel)
- Wire planes 6 mm apart and 6 mm from APD plane
- All signals digitized at 1 MS/s, ±1024S around trigger
- Drift field 376 V/cm
 - Field shaping rings: copper
 - Supports: acrylic
 - Light reflectors/diffusers: Teflon
 - APD support plane: copper;Au (AI) coated for contact (light reflection)
 - Central cathode, U+V wires: photo-etched phosphor bronze
 - Flex cables for bias/readout: copper on kapton, no glue

Comprehensive material screening program

Goal: 40 cnts/2y in $0\nu\beta\beta \pm 2\sigma$ ROI, 140 kg LXe Jacques Farine, Neutrino 2012

Neutrino-less double beta decay experiments

40 cm

40 cm

Copper vessel 1.37 mm thick 175 kg LXe, 80.6% enr. in ¹³⁶Xe Copper conduits (6) for:

- APD bias and readout cables
- U+V wires bias and readout

 LXe supply and return Epoxy feedthroughs at cold and warm doors Dedicated HV bias line

 EXO-200 detector:
 JINST 7 (2012) P05010

 Characterization of APDs:
 NIM A608 68-75 (2009)

 Materials screening:
 NIM A591, 490-509 (2008)

Jacques Farine, Neutrino 2012

Combining Ionization and Scintillation

Neutrino-less double beta decay experiments

From J. Farine, Neutripo 2012, Neutrino Phyiscs School 2012, S. Schönert, TU München

Low Background Spectrum

(In agreement with previously reported measurements)

 Trigger fully efficient above 700 keV

- Low background run livetime: 120.7 days
- Active mass: 98.5 kg LXe (79.4 kg ¹³⁶LXe)
- Exposure: 32.5 kg·yr
- Total dead time (vetos): 8.6%
- Various background PDFs fitted along with 2vββ and 0vββ PDFs

Neutrino-less double beta decay experiments From J. Farine, Neutrino Phylics School 2012, S. Schonert, 10 Munchen

Background counts in $\pm 1,2 \sigma$ ROI

	ββ 2 ν
	ββ0ν (90% CL Limit)
	⁴⁰ K LXe Vessel
	⁵⁴ Mn LXe Vessel
	⁶⁰ Co LXe Vessel
	⁶⁵ Zn LXe Vessel
	²³² Th LXe Vessel
	²³⁸ U LXe Vessel
	¹³⁵ Xe Active LXe
	²²² Rn Active LXe
	²²² Rn Inactive LXe
	²¹⁴ Bi Cathode Surface
	²²² Rn Air Gap
•	Data
	Total

	Expected events from fit			
	±Ισ		±2 σ	
²²² Rn in cryostat air-gap	1.9	±0.2	2.9	±0.3
²³⁸ U in LXe Vessel	0.9	±0.2	1.3	±0.3
²³² Th in LXe Vessel	0.9	±0.1	2.9	±0.3
²¹⁴ Bi on Cathode	0.2	±0.01	0.3	±0.02
All Others	~0.2		~0.2	
Total	4. I	±0.3	7.5	±0.5
Observed	I		5	
Background index b (kg ⁻¹ yr ⁻¹ keV ⁻¹)	1.5 10	⁻³ ± 0.1	1.4·10 ⁻³	± 0.1

EXO-200 goal (slide 3):

40 cnts/2y in ±2σ ROI, 140 kg LXe

In this data 120 days, 98.5 kg, this would be: 4.6

Expected from the fit: 7.5

Observed: 5

Background within expectation

Neutrino-less double beta decay experiments

From J. Farine, Neutripontecono Neutrino Phyiscs School 2012, S. Schönert, TU München

Limits on $T_{1/2}^{0\nu\beta\beta}$ and $< m_{\beta\beta} >$

90% C.L. limit compared with Recent ¹³⁶Xe constraints (KamLAND-ZEN) >2.5 factor improvement.

 $T_{1/2}^{0\nu\beta\beta} > 1.6 \cdot 10^{25} \text{ yr}$ $< m_{\beta\beta} > < 140 - 380 \text{ mV}$ (90% C.L.) [arXiv:1205.5608] Tension with discovery

claim in Ge.

KamLAND-Zen Collaboration Phys. Rev. C 85 (2012) 045504] [H.V. Klapdor-Kleingrothaus et al. Eur. Phys. J. A12 (2001) 147] [H.V. Klapdor-Kleingrothaus and I.V. Krivosheina Mod. Phys. Lett., A21 (2006) 1547]

Neutrino-less double beta decay experiments From J. Farine, Neutrino Phyloce 2012, S. Schönert, TU München

Comparison of upper limits (90 % C.L.) with claim [16] for QRPA NME

A.Faessler, G.L. Fogli, E. Lisi, V. Rodin, A.M. Rotunno, F. Simkovic, PhysRevD.79.053001 arXiv: 0810.5733v2 (EXO result included by 'hand')

[16] H. V. Klapdor-Kleingrothaus and I. V. Krivosheina, "The Evidence For The Observation Of $0\nu\beta\beta$ Decay: The Identification Of $0\nu\beta\beta$ Events From The Full Spectra," Mod. Phys. Lett. A **21**, 1547 (2006).

Table 2 Bayesian posterior probabilities $p(\bar{H})$ using EXO-200 data for the hypothesis that the $0\nu\beta\beta$ signal of Heidelberg-Moscow is correct. Probabilities are given for different matrix element calculations and for the $\pm 1\sigma$ and $\pm 2\sigma$ energy windows.

method	expected signal events	$p(ar{H})$ in %	expected signal events	$p(ar{H})$ in %
	in $\pm 1\sigma$ wind	dow	in $\pm 2\sigma$ wind	dow
QRPA max	4.4 ± 1.1	4	6.1 ± 1.5	6
QRPA min	2.8 ± 0.7	11	3.9 ± 0.9	16
ISM	10.6 ± 2.5	0.1	14.8 ± 3.5	0.2
GCM	14.3 ± 3.4	0.03	19.9 ± 4.8	0.05
pnQRPA	6.3 ± 1.5	1	8.8 ± 2.1	2
IBM	6.1 ± 1.5	1	8.6 ± 2.1	2

N.B. comparison with HdM claim (28±6.86) cts in 71.7 kg yr

B. Schwingenheuer, Annalen der Physik, August 22, 2012

• 'Bare' enrGe array in liquid argon •Shield: high-purity liquid Argon / H₂O •Phase I: 18 kg (HdM/IGEX) / 15 kg nat. • Phase II: add ~20 kg new enr. detectors; total ~40 kg

•Array(s) of ^{enr}Ge housed in high-purity electroformed copper cryostat Shield: electroformed copper / lead

 Initial phase: R&D demonstrator module: Total ~60 kg (30 kg enr.)

Majorana

Physics goals: degenerate mass range **Technology:** study of bgds. and exp. techniques

• open exchange of knowledge & technologies (e.g. MaGe MC) • intention to merge for O(1 ton) exp. (inv. Hierarchy) selecting the best technologies tested in GERDA and Majorana

Neutrino-less double beta decay experiments

+

26

Background requirement for GERDA/Majorana:

⇒Background reduction by factor $10^2 - 10^3$ required w.r. to precursor exps. ⇒Degenerate mass scale $O(10^2 \text{ kg·y}) \Rightarrow$ Inverted mass scale $O(10^3 \text{ kg·y})$ 27

Neutrino-less double beta decay experiments

Neutrino-less double beta decay experiments

v Pontecorvo Neutrino Phylscs School 2012, S. Schönert, TU München

Phase I detectors

- All diodes reprocessed and optimized for LAr
- Well tested procedure for detector handling
- Long term stability in LAr established
- Energy resolution in LAr: ~2.5 keV (FWHM) @1.3
 MeV

<u>8 diodes (from HdM,</u> IGEX):

- Enriched 86% in ⁷⁶Ge
- Total mass 17.66 kg

6 diodes from Genius-TF:

- ^{nat}Ge
- Total mass: 15.60 kg

Neutrino-less double beta decay experiments

Commissioning runs (with non-enriched detectors)

Calibration with ²²⁸Th: 2500 3000 Energy (keV) 2500 300 Energy (keV)

Energy (keV)

Commissioning runs with **nonenriched low-background detectors** to study performance and backgrounds (June 2010 – Mai 2011)

Energy resolutions during commissioning: dependent on chosen detector configuration:

- Coaxial (Phase I): 4-5 keV (FWHM) @ 2.6 MeV
- BEGe (Phase II): 2.8 keV (*FWHM*) @ 2.6 MeV

Neutrino-less double beta decay experiments

detector mock-up and lock-system

Neutrino-less double beta decay experiments

Commissioning runs:

The unexpected ⁴²Ar (⁴²K) signal

GERDA proposal: ⁴²Ar/^{nat}Ar <3·10⁻²¹

 hower enhancement of count rate by collection 34 of ⁴²K ions by E-field of diodes Neutrino-less double beta decay experiments

Commissioning runs: <u>Rate of 42K(42Ar): 1525 keV peak</u>

Neutrino-less double beta decay experiments

Commissioning runs: <u>Rate of 42K: high-energy region</u>

Neutrino-less double beta decay experiments
Last commissioning runs (June – September 2011): 3 enriched + 5 non-enriched detectors

- All detectors installed inside new mini-shrouds
- First GERDA 2vββ spectrum measured!
- Ready to deploy all enriched detectors

Neutrino-less double beta decay experiments

Commissioning phase completed: 8 enriched detectors deployed in GERDA in October 2011!

V Pontecorvo Neutrino Phyiscs School 2012, S. Schönert, TU München

Commissioning phase completed: all enriched detectors in GERDA in October 2011!

Neutrino-less double beta decay experiments

calibration spectra

Th-228 calibration spectra taken regularly 1 per 7-14 days

preliminary results:

Cuts applied:

- Data quality (noise)
- Muon-veto
- Ge-Ge anti-coincidenc

Blinded region: $(Q_{\beta\beta} \pm 20)$ keV

Visible backgrounds:

- Ar-39
- Alphas
- Indicated isotopes
- 2vββ decay of Ge-76

preliminary results:

Tentative fit yields $\tau = (225\pm30)$ d; consistent with Po-210 (200 d), dto. Energy Some indication that Po-210 was introduced in one refurbishing period

Neutrino-less double beta decay experiments

background: unstable Ar isotopes

Published activity of (1.01±0.08) Bq/kg (Benetti et al., NIM A574 (2007) 83) fully compatible with our data

Neutrino-less double beta decay experiments

Limit <41 µBq/kg (90% CL) (Ashtikov et al., arXiv:nucl-ex/0309001) NOT compatible with our data

Intensity of 1525 keV line in E-field free setup indicates Ar-42 activity to be more than twice the value of avove limit

Evidence that charge K-42 ions drift in electic field of Ge-diodes. Minishroud as shield against E-field

preliminary results:

background index

GERDA / HdM BI ratio almost 1/10

Neutrino-less double beta decay experiments

preliminary results:

Neutrino-less double beta decay experiments

preliminary results:

 $2\nu\beta\beta$ half-live

Neutrino-less double beta decay experiments

GERDA Phase I expected completion in spring 2013:

• Unblinding & physics analysis

Subsequently start of GERDA Phase II:

- Goal: reduce background by factor 10 w.r. to Phase I
- Up to additional 30 enriched BEGe detectors (20 kg)
- Liquid argon veto instrumentation

Neutrino-less double beta decay experiments

M. Agostini et al., JINST 6P03005 (2011) V Pontecorvo Neutrino Phyiscs School 2012, S. Schönert, TU München

Suppression of p+ contact pulses via PSD measured using Am-241 alpha source

surface	p+ contact	groove inner	groove bottom	groove outer
event survival fraction *	< 0.011	< 0.12	< 0.009	< 0.011

* 90% confidence upper limits

results limited by background in test setup; improved measurement analysis under way Neutrino-less double beta decay experiments V Pontecorvo Neutrino Phylics School 2012; S. Schönert, TU München

Suppression of n+ surface events via PSD measured using Sr-90 and Ru-106 beta sources

MC cut set to 20% survival of gamma-like events and 0.1% survival of beta-like events

good quantitative agreement of simulated suppression with measurement

beta n+ surface event PSD rejection power demonstrated stable in region 1 - 2 MeV

School 2012, S. Schönert, TU München

Suppression of K-42 n+ and p+ events via PSD measured with BEGe detector in LArGe with spiked ⁴²Ar

Neutrino-less double beta decay experiments

Path of new 37.5 kg of ^{enr}Ge (87% enrichment in ⁷⁶Ge): from isotope separation to final Phase II detectors

To minimize activation by cosmic ray:

- Transportation by truck or ship in shielded containers
- deep underground storage

55

Neutrino-less double beta decay experiments

After successful test of production production chain with ^{depl}Ge: • 3765 kg of 86% ^{enr}Ge (in form of GeO2) purified to 35.4 kg (94%) of 6N (+ 1.1 kg tail = 97%);

Neutrino-less double beta decay experiments

Production of enriched Ge crystals at Oak Ridge (USA) started October 17, 2011

Transportation in shielded container to minimize cosmic ray activation

Ge stored underground storage when not processed

- Crystal production started on 17th of October
- Completion planned for June
- Production of first detectors: Jan/Feb 2012
- End of 2012: all Phase II detectors available

Neutrino-less double beta decay experiments

Acceptance test of enriched BEGe detectors underground at HADES facility (vicinity of Canberra, Olen, Be)

Complete detector characterization including energy resolution, dead layer, active volume, PSA, precision surface scan

Crystal	Mass	Resolution (keV)	Average Dead layer (mm)
	(kg)	60 Co (1173 keV)	$^{133}\mathrm{Ba}$
#2432AA	0.5	1.62 ± 0.02	0.8
#2432BB	0.7	1.64 ± 0.01	0.8
#2432CC	0.7	1.59 ± 0.01	0.8
#2432DD	0.7	1.59 ± 0.01	0.8
#2435AA	0.8	1.60 ± 0.01	0.7
#2435BB	0.8	1.65 ± 0.01	0.8
#2435CC	0.6	1.62 ± 0.02	-
#2435CC	0.6	1.62 ± 0.02	-
	Crystal #2432AA #2432BB #2432CC #2432DD #2435AA #2435BB #2435CC	Crystal Mass (kg) #2432AA 0.5 #2432BB 0.7 #2432CC 0.7 #2432DD 0.7 #2435AA 0.8 #2435BB 0.8 #2435CC 0.6	CrystalMassResolution (keV) (kg) #2432AA0.5 1.62 ± 0.02 #2432BB0.7 1.64 ± 0.01 #2432CC0.7 1.59 ± 0.01 #2432DD0.7 1.59 ± 0.01 #2435AA0.8 1.60 ± 0.01 #2435BB0.8 1.65 ± 0.01 #2435CC0.6 1.62 ± 0.02

production of 7 crystal slices and detector tests completed:

 All detectors have excellent energy res.: 1.7 keV (FWHM) @1.3 MeV

First 5 Phase II enriched BEGe detectors deployed in GERDA

R&D: liquid argon instrumentation for Phase II

Low background GERDA-LArGe test facility @ LNGS: Detection of coincident liquid argon scintillation light to discriminate background

 $\overline{\mathbf{v}}$

R&D liquid argon instrumentation

Operation of Phase II detector prototype in LArGe: **Measured** suppression factor at $Q_{\beta\beta}$: ~0.5·10⁴ for a ²²⁸Th calibration source Also: successful read out scintillation light with fibers coupled to SiPMs

Neutrino-less double beta decay experiments

LAr instrumentation for Phase II

PMT option (Ø500)

SiPM & scintillating fiber option (Ø250)

- 3rd option: R&D on large area avalanche photodiodes or UV sensitive SiPMs on custom low activity substrates has started
- MC campaign to compare competing options ongoing
- Hardware for PMT and fiber options available & prototype/test setup construction started

GERDA Phase I/II sensitivity

GERDA Sensitivity

Neutrino-less double beta decay experiments

Bolometric technique

The working principle is very simple:

Neutrino-less double beta decay experiments

V Pontecorvo Neutrino Phyiscs School 2012, S. Schönert, TU München

This technique measures all the

From M. Pedretti, Neutrino 2012

Neutrino-less double beta decay experiments

Bolometric 0vDBD experiment evolution

From M. Pedretti, Neutrino 2012

Neutrino-less double beta decay experiments

CUORICINO lesson: background

Sensitivity of current generation bolometric DBD experiment is limited by bkg.

MC: the background in CUORICINO is due to degraded alpha particles which release only part of their energy in the detector (surface contamination)

From M. Pedretti, Neutrino 2012

Neutrino-less double beta decay experiments

CUORE-0: tower assembly

From M. Pedretti, Neutrino 2012

Neutrino-less double beta decay experiments

CUORE-0: sensitivity

Limited by the cryostat contamination bkg

Background: 0.05-0.11 c/keV/kg/y range If 0.05 c/(keV kg y), expected 2-year sensitivity is $T_{1/2} = 5.9 \times 10^{24} \text{ y} @ 90\% \text{ CL}$ (CUORICINO: $T_{0v} > 2.8 \times 10^{24} \text{ y}$) $m_{BB} = 170 - 390 \text{ meV}$

From M. Pedretti, Neutrino 2012

Neutrino-less double beta decay experiments

CUORE status

- Crystals, almost all arrived (all at LNGS by the end of 2012)
- Copper parts are being machined and cleaned
- Dilution unit delivered to LNGS (though some repairs needed)
- CUORE Hut, and most of all the infrastructures, ready
- Detector assembly line, ready (small modifications)
- Radon abatement system installed
- 3 (of 6) cryostat vessels delivered soon at LNGS
- Commissioning of the cryostat second half of 2012

Crystals Thermistors Cleaned Cu parts Cryogenic Tower Assembly Detector insertion Cool Down

13/03 13/12 13/12 14/04 14/07 14/11

12/12

From M. Pedretti, Neutrino 2012

Neutrino-less double beta decay experiments

CUORE sensitivity

From M. Pedretti, Neutrino 2012

Neutrino-less double beta decay experiments

Scintillating bolometers: Lucifer

R&D funded (3.3 M€) by ERC, in the form of an advanced GRANT (03/2010→03/2015)

Scintillating bolometers to recognize the α -induced background thanks to the readout of the scintillation light

Array of 36÷44 enriched (95%) Zn⁸²Se crystals.

Expected background in the ROI (2995 keV) is ~ 3+6 10⁻³ c/keV/kg/y Energy resolution ~10 keV FWHM

Neutrino-less double beta decay experiments

Neutrino-less double beta decay experiments

V Pontecorvo Neutrino Phyiscs School 2012, S. Schönert, TU München

Summary / Conclusion

- Central quest: are neutrinos Majorana particles?
- DBD only practical approach to give answer
- Difficult and costly experiments
- Phased approach in DBD
 - carefully monitor whether promised detector performance are reached during upcoming years
 - degenerate mass scale (test KDKC claim) by GERDA, EXO and KamLAND-zen: complementarity of DBD and Katrin (Dirac vs. Majorana)
 - inverted mass scale can be scrutinized within next 5-10 years
- DBD community "opinion":
 - 3 different isotopes (or more) (NME!) for inv.-hierarchy study
 - Traco-calo needed, in particular when signal seen in calorimeter found to study angular distribution etc. (leading term?)

Summary & Outlook

 $0\nu\beta\beta$ experimental strategy during the next decade

Neutrino-less double beta decay experiments

V Pontecorvo Neutrino Phyiscs School 2012, S. Schönert, TU München