# Neutrino telescopes: results and prospects

Pontecorvo Neutrino School Alushta, Crimea, Ukraine

Juan de Dios Zornoza (IFIC – Valencia)





#### Neutrino astronomy

- Advantages w.r.t. other messengers:
  - Photons: interact with CMB and matter
  - Protons: interact with CMB and are deflected by magnetic fields
- <u>Drawback</u>: large detectors (~GTon) are needed.

D



#### **Production mechamism**

 $e^{\pm} + \overline{v}_e(v_e) + \overline{v}_\mu(v_\mu)$ 

 Neutrinos are expected to be produced in the interaction of high energy nucleons with matter or radiation:

$$N + X \to \pi^{\pm}(K^{\pm}...) + Y \to \mu^{\pm} + \nu_{\mu}(\overline{\nu}_{\mu}) + Y$$

**Cosmic rays** 



$$N + X \rightarrow \pi^0 + Y \rightarrow \gamma \gamma + Y$$

Gamma ray astronomy

# Cosmic rays



Cosmic rays follow a broken power-law:

$$\frac{dN}{dE} \propto E^{-\gamma} \begin{cases} \gamma = 2.7 \\ \gamma = 3.0 \\ \gamma = 2.7 \end{cases} \rightarrow \text{ the knee} \\ \text{the ankle} \end{cases}$$

Beyond ~5×10<sup>19</sup> eV, the flux should vanish due to the interaction of protons with the CMB (GZK limit).

High energy neutrinos could give information about the origin of cosmic rays.

# High energy photons

The observation of TeV photons can be explained by

 <u>leptonic processes</u> (inverse Compton, bremsstrahlung) or
 the decay of neutral pions produced in <u>hadronic interactions</u> (→neutrino production).



acceleration in AGNs

#### Galactic sources

#### Supernova remnants

 Different scenarios: plerions (center filled SNRs), shell-type SNRs, SNRs with energetic pulsars...

#### Micro-quasars

a compact object (BH or NS) accreting matter from a companion star.
 Neutrino beams could be produced in the MQ jets

#### Magnetars

- Isolated neutron stars with surface dipole magnetic fields ~10<sup>15</sup> G, much larger than ordinary pulsars
- Seismic activity in the surface could induce particle acceleration in the magnetosphere

# Extragalactic sources

#### Active galactic nuclei

- It includes Seyferts, quasars, radio galaxies and blazars
- Standard model: a super-massive (10<sup>6</sup>-10<sup>8</sup> M<sub>o</sub>) black hole towards which large amounts of matter are accreted
- Time-variable emission would enhance chances of detection
- Gamma-ray bursters
  - GRBs are brief explosions of γ rays (often + X-ray, optical and radio) In the fireball model, matter moving at relativistic velocities collides with the surrounding material. The progenitor could be a collapsing super-massive star or NS merging
  - Neutrinos could be produced in several stages: precursor (TeV), main-burst (100 TeV-10 PeV), after-glow (EeV). The time information makes detection almost background free

#### RXJ1713-3946

- Data from HESS indicate that the emission of the shell-type supernova remnant RXJ1713-3946 seem to favor hadronic origin:
  - Increase of the flux in the directions of the molecular clouds
  - Unnaturally low B fields have to be assumed to avoid too high synchroton radiation  $B \le 10 \ \mu$ G, even interstellar fields are higher and shocks are expected to amplify fields; measurements in other SNRs indicate B ~ 100  $\mu$ G)
- Spectrum up to several tens of TeV. If gammas come from  $\pi 0$ , then protons are accelerated at E > several hundreds of TeV.
- Another interesting case: W28



#### HESS image of RXJ1713-3946



log ε<sub>ν</sub>, eV

### Dark matter

- WIMPs (neutralinos, KK particles) are among the most popular explanations for dark matter
- They would accumulate in massive objects like the Sun, the Earth or the Galactic Center
- The products of such annhiliations would yield "high energy" neutrinos, which can be detected by neutrino telescopes



# Ultra-high energy neurinos

Protons interact with cosmic microwave background, which limits its range at high energies (GZK cut-off):  $p \gamma_{CMB} \rightarrow \Delta^+ \rightarrow n \pi^+ (\text{or } p \pi^0)$ 

$$\lambda_{\gamma p} = \frac{1}{n_{CMB} \cdot \sigma_{p\gamma_{CMB}}} \cong 10 \text{ Mpc } @ \text{E}_{p} = 5 \times 10^{19} \text{ eV}$$

• The GZK cut-off also leads to a measurable to neutrinos

$$\pi \rightarrow \mu + \nu_{\mu} \rightarrow e + \nu_{\mu} + \nu_{e} + \nu_{\mu}$$

~1 neutrino ( $E_v > 2x10^{18} \text{ eV}$ ) per km<sup>3</sup> year

# Scientific scope



#### Neutrino detection techniques

#### Optical Cherenkov:

- In Ice: AMANDA, IceCube
- In water: Baikal, ANTARES, NEMO, Nestor, KM3NeT

#### Atmospheric showers:

- On earth: Auger
- In space: EUSO

#### Radio:

- On earth: RICE, SalSA, ARIANNA, LOFAR
- Balloon: ANITA

#### • Acoustic:

– AMADEUS, SPATS

#### M. Markov

#### B. Pontecorvo

M. Markov: "We propose to install detectors deep in a lake or in the sea and to determine the direction of charged particles with the help of Cherenkov radiation." (1960, Rochester Conference)

# Detection principle of NTs

0

0



The neutrino is detected by the Cherenkov light emitted by the muon produced in the CC interaction.



Position and time information of hits in the PMTs allows us to reconstruct the original direction

# Other signatures

- Cascades are an important alternative signature: detection of electron and tau neutrinos.
- Also neutral interaction contribute (only hadronic cascade)



- Clear signature of oscillations.
- ANTARES & AMANDA are too small to detect double bang signature (they are too rare)
- However, cubic-kilometer telescopes could detect them.
- Maximum sensitivity at 1-10 PeV



# ceCube simulatior



# Physical background

μ

There are two kinds of background:

 Muons produced by cosmic rays in the atmosphere (→ detector deep in the sea and selection of up-going events).
 Atmospheric neutrinos (cut in the energy).





# NTs in the world

• Several projects are working/planned, both in ice and ocean and lakes.



#### Water vs Ice

- Very large volumes of medium transparent to Cherenkov light are needed:
  - Ocean, lakes...
  - Antarctic ice
- Advantages of <u>oceans</u>:
  - Larger scattering length  $\rightarrow$  better angular resolution
  - Weaker depth-dependence of optical parameters
  - Possibility of recovery
  - Changeable detector geometry
- Advantages of <u>ice</u>:
  - Larger absorption length
  - No bioluminescence, no <sup>40</sup>K background, no biofouling
  - Easier deployment
  - Lower risk of point-failure
- Anyway, a detector in the Northern Hemisphere in necessary for complete sky coverage (Galactic Center!), and it is only feasible in the ocean.



# Regions of the sky observed by NTsAMANDA/IceCube (South Pole)<br/>(ang. res.: ~2°/0.6°)ANTARES (43° North)<br/>(ang. res.: ~0.3°/0.1°)





# Pioneers



#### DUMAND



#### History of the project:

1975: first meetings for underwater detector in Hawaii

- 1987: Test string
- 1988: Proposal: "The Octagon" (1/3 AMANDA)
- 1996: Project cancelled

# Baikal



History of the project
since 1980: site studies
1984 first stationary string
1993 NT-36 started
1994 first atmospheric neutrino identified
1998 NT-200 commissioned
2005: NT200+ commissioned

# Baikal

Upgrades and plans for the future: GVD

- Instrumented volume ~0.3 km3
- 2304 OMs
- 96 strings/ 12 clusters
- Prototype line deployed in 2011
- 2014-2018: construction data taking
- $_{\circ}\,$  Also plans for acoustic detection



# AMANDA



1997-99: AMANDA-B10 (inner lines of AMANDA-II)
10 strings
302 PMTs

- Since 2000: AMANDA-II
  19 strings
  - 677 OMs
  - **20-40** PMTs / string

Latter merged into IceCube

• May 2009: switched off

#### AMANDA

#### 26 sources selected for search

|     | IN STUDIES ACTO MULTINA | 2               | APELLING MA | Y JOKE POINT | T ANTY POD | Source          | $\Phi_{90}$ | p-value   |
|-----|-------------------------|-----------------|-------------|--------------|------------|-----------------|-------------|-----------|
|     |                         | δ=90°           |             |              |            | Crab Nebula     | 9.27        | 0.10      |
|     |                         |                 |             |              |            | MGRO J2019+37   | 9.67        | 0.077     |
|     |                         |                 |             |              |            | Mrk 421         | 2.54        | 0.82      |
|     |                         |                 |             |              |            | Mrk 501         | 7.28        | 0.22      |
|     |                         | */ <del>/</del> |             |              | the start  | LS I +61 303    | 14.74       | 0.034     |
|     |                         |                 |             |              |            | Geminga         | 12.77       | 0.0086    |
|     |                         |                 |             |              |            | 1 ES 1959 + 650 | 6.76        | 0.44      |
|     |                         |                 |             |              |            | M87             | 4.49        | 0.43      |
|     |                         |                 |             |              |            | Cygnus X-1      | 4.00        | 0.57      |
| 24h |                         |                 |             |              | /0h        |                 |             |           |
|     | ົບ ົບ.ວ ົ 1 🦯           | 1.5             | 2 2.5       | 3            | 3.5        |                 |             | Hart Link |

Equatorial sky map of 6595 events recorded by AMANDA II in 2000-2006

The most significant point has 3.4σ but this should happen 95% of the time with the present statistics.

For 26 sources,  $p \le 0.0086$ occurs 20% of the time for at least one source. IceCube



#### Amundsen-Scott South Pole Station

runway

#### South Pole

AMANDA-II

1

IceCube

# IceCube

#### ІсеТор

80 pairs of ice Cherenkov tanks Threshold ~ 300 GeV

#### IceCube Array

80 strings with 60 OMs 17 m between OMs 125 m between strings 1 km<sup>3</sup>. A 1-Gton detector

#### **Deep Core**

6 strings with 60 HQE OMs Inner part of the detector

#### IceCube + Deep Core = 5160 OMs

IC86:

- ~ 5x10<sup>10</sup> muons/year
- ~ 20,000 neutrinos/year

Eiffeltornet

# IceTop



80 stations

- 2 tanks per station
- 2 DOMs per tank
- Cosmic ray studies
  - 2.8 km altitude
- Use as veto for below ice detector



Zenith 0.150148 Azimuth 3.5072



5 megawatt power plant 10<sup>6</sup> kg of drilling equipment

# String deployment



#### Point source search

#### 43339 upgoing + 64236 down-going from 723 days (IC40+IC59)



# (13 galactic SNR etCandidate listactive galaxies, etc.

| 13            | 3 SNRs   | + 30 AG   | iNs + .  | No         | o signif | ic  | ant exces     | s ye   | t      |                   | 同時期期           |      |
|---------------|----------|-----------|----------|------------|----------|-----|---------------|--------|--------|-------------------|----------------|------|
| ource         | RA (deg) | Dec (deg) | Туре     | Distance   | P-value  |     | PKS 0235+164  | 39.66  | 16.62  | LBL               | z = 0.94       | 0.18 |
| yg OB2        | 308.08   | 41.51     | UNID     | -          |          |     | PKS 0528+134  | 82.73  | 13.53  | FSRQ              | z = 2.060      | 0.49 |
| IGRO J2019+37 | 305.22   | 36.83     | PWN      | -          |          |     | PKS 1502+106  | 226.10 | 10.49  | FSRQ              | z = 0.56/1.839 |      |
| GRO J 1908+06 | 286.98   | 6.27      | SNR      | -          | 0.38     |     | 3C 273        | 187.28 | 2.05   | FSRQ              | z = 0.158      |      |
| as A          | 350.85   | 58.81     | SNR      | 3.4 kpc    |          |     | NGC 1275      | 49.95  | 41.51  | Scyfert Galaxy    | z = 0.017559   |      |
| 2443          | 94.18    | 22.53     | SNR      | I.5 kpc    |          |     | СудА          | 299.87 | 40.73  | Radio-loud Galaxy | z = 0.056146   | 0.44 |
| eminga        | 98.48    | 17.77     | Pulsar   | 100 pc     |          |     |               |        |        |                   |                |      |
| rab Nebula    | 83.63    | 22.01     | SNR      | 2 крс      |          |     | Sg⊢A*         | 266.42 | -29.01 | Galactic Center   | 8.5 kpc        | 0.49 |
| ES 1959+650   | 300.00   | 65.15     | HBL      | z = 0.048  |          |     | PKS 0537-441  | 84.71  | -44.09 | LBL               | z = 0.896      | 0.44 |
| ES 2344+514   | 356.77   | 51.70     | HBL      | z = 0.044  | -        |     | Cen A         | 201.37 | -43.02 | FRI .             | 3.8 Mpc        | 0.14 |
| C66A          | 35.67    | 43.04     | Blazar   | z = 0.44   | 0.42     |     | PKS 1454-354  | 224.36 | -35.65 | FSRO              | z = 1.42       | 0.14 |
| 426+428       | 2 7.14   | 42.67     | HBL      | z = 0. 29  |          |     | PKS 2155-304  | 329.72 | -30.23 |                   | z = 0 116      |      |
| L Lac         | 330.68   | 42.28     | HBL      | z = 0.069  | 0.4      |     | DKS 1422 207  | 244.52 | 20.25  | FRID              | 0915           | 0.37 |
| lrk 501       | 253.47   | 39.76     | HBL      | z = 0.034  | 0.19     |     | FK3 1022-277  | 240.33 | -27,00 | 136.0             | 2 - 0.013      | 0.27 |
| rk 421        | 166.11   | 38.21     | HBL      | z = 0.03   |          | 11  | QSO 1730-130  | 263.26 | -13.08 | FSRQ              | z = 0.902      |      |
| Comae         | 185.38   | 28.23     | HBL      | z = 0.1020 |          |     | PKS 1406-076  | 212.24 | -7.87  | FSRQ              | z = 1.494      | 0.36 |
| E\$ 0229+200  | 38.20    | 20.29     | HBL      | z = 0. 39  | 0.39     | 1-1 | Q\$O 2022-077 | 306.42 | -7.64  | FSRQ              | z = 1.39       |      |
| 187           | 187.71   | 12.39     | BL Lac   | z = 0.0042 | 0.38     |     | 3C279         | 194.05 | -5.79  | FSRQ              | z = 0.536      | 0.45 |
| 5 0716+71     | 110.47   | 71.34     | LBL      | z > 0.3    | 0.49     |     | түсно         | 6.36   | 64.18  | SNR               | 2.4 kpc        |      |
| 182           | 148.97   | 69.68     | Starbust | 3.86 Mpc   | -        |     | Cyg X-I       | 299.59 | 35.20  | MQSO              | 2.5 kpc        |      |
| C 123.0       | 69.27    | 29.67     | FRII     | 1038 Mpc   | -        |     | Суд Х-З       | 308.11 | 40.96  | MQSO              | 9 kpc          |      |
| C 454.3       | 343.49   | 16.15     | FSRQ     | z = 0.859  | 0.48     |     | LSI 303       | 40.13  | 61.23  | MQSO              | 2 kpc          |      |
| C 38.4I       | 248.81   | 38.13     | FSRQ     | z = 1.814  | 0.3      |     | SS433         | 287.96 | 4.98   | MQSO              | 1.5 kpc        | 0.48 |
|               | -        |           |          |            |          | -   |               | 1      | 1      | 1                 |                |      |

#### GRBs

Two strategies:
-model-dependent search: during the period of gamma emission

no event seen, 8.4 events expected

-model-independent search: wider time scales

2 events seen (ev1: 30s after, ev2 14h after), very likely muons from cosmic ray showers



Factor 3.7 below predictions: -proton density not enough to explain UHECR -or physics in GRB shocks not well described by models

#### Dark matter

The search for dark matter in the Sun has the advantage that the signal would be very clean (the astrophysics are well known), compared with other indirect searches (which can be also interpreted as pulsars, etc.)


### Two events passed the selection criteria

2 events / 672.7 days - background (atm. μ + conventional atm. v) expectation 0.14 events preliminary p-value: 0.0094 (2.36σ)



# **UHE** neutrinos





### PIN

16

- 20 additional strings, 50-60 Oms each (10 MT)
- Low energy frontier (E<sub>thres</sub> ~ 1GeV)

Neutrino oscillations, mass hierarchy, WIMPs...





(G. Sullivan, Neutrino 2012)

### MSW effect

 $\rho$  [g/cm<sup>3</sup>]

• Oscillation probabilities in vacuum:  $P_{\alpha\alpha} = 1 - \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{4E}$ matter:  $P_{\alpha\alpha} = 1 - \sin^2 2\tilde{\theta} \sin^2 \frac{\Delta \tilde{m}^2 L}{4E}$ 

$$\Delta \tilde{m}^{2} = \xi \cdot \Delta m^{2}, \quad \sin 2\tilde{\theta} = \frac{\sin 2\theta}{\xi},$$

$$\xi \equiv \sqrt{\sin^{2} 2\theta} + \left(\cos 2\theta - \hat{A}\right)^{2},$$

$$\hat{A} = \frac{2EV}{\Delta m^{2}} = \frac{\pm 2\sqrt{2E}G_{F}n_{e}}{\Delta m^{2}} \Rightarrow \text{MH}$$
Resonance energy:
$$E_{\text{res}} [\text{GeV}] \approx 13200 \cos 2\theta \frac{\Delta m^{2} [\text{eV}^{2}]}{\Delta m^{2}}$$

Matter resonance:  $\widehat{A} \to \cos 2\theta$ In this case: - Effective mixing maximal - Effective osc. frequency minimal

For  $v_{\mu}$  appearance,  $\Delta m_{31}^{2}$ : -  $\rho \sim 4.7$  g/cm<sup>3</sup> (Earth's mantle):  $E_{res} \sim 7$  GeV -  $\rho \sim 10.8$  g/cm<sup>3</sup> (Earth's outer core):  $E_{res} \sim 3$  GeV

Beyond DeepCore

## Neutrino oscillations

 Second oscillation minimum accessible with a ~GeV threshold



# Solar physics

- IceTop tanks able to measure measure 1-10 GeV spectrum
- The giant solar flare of 13<sup>th</sup>
   December 2003 detected by
   IceTop



## Other science by IceCube

### Cosmic ray physics (with IceCube + IceTop):

- IceTop detects showers, IceCube detects the associated muons→ cosmic ray composition studies (heavier CRs produce more muons at a given energy)
- IceCube can observe muons hundreds meters away from the shower core (high transverse-momentum interactions in the air shower)

### Neutrino oscillations

### Multi-messenger astronomy

- Correlations with ROTSE, AGILE, MAGIC, and LIGO, ANTARES
- New technologies
  - 3 prototype digital radio strings deployed with IceCube strings
  - 4 Hydrophones deployed above IceCube
- Glaciology, South Pole atmosphere, Earth tomography?

# ANTARES



# The ANTARES collaboration

NIKHEF, Amsterdam
 KVI Groningen
 NIOZ Texel

University of Erlangen
 Bamberg Observatory

8

IFIC, Valencia
 UPV, Valencia
 UPC, Barcelona

- CPPM, Marseille
- DSM/IRFU/CEA, Saclay
- APC Paris
- IPHC (IReS), Strasbourg
- Univ. de H.-A., Mulhouse
- IFREMER, Toulon/Brest
- C.O.M. Marseille
- LAM, Marseille
- GeoAzur Villefranche

University/INFN of Bari
University/INFN of Bologna
University/INFN of Catania
LNS – Catania
University/INFN of Pisa
University/INFN of Rome
University/INFN of Genova
University/INFN of Napoli

ITEP, Moscow

ISS, Bucarest

## The ANTARES detector



### Detector elements



The Optical Module contains a 10" PMT and its electronics

The Optical Beacons allows timing calibration and water properties measurements

ns be er es ts



It receives power from shore station and distributes it to the lines. Data and control signals are also transmitted via the JB.



The Local Control Module contains electronics for signal processing



It provides power and data link between the shore station and the detector (40 km long)

### **ANTARES** infrastructure



# Milestones

### 2001 – 2003:

- Main Electro-optical cable in 2001
- Junction Box in 2002
- Prototype Sector Line (PSL) & Mini Instrumentation Line (MIL) in 2003

#### <u> 2005 – 2006:</u>

- > Mini Instrumentation Line with OMs (MILOM) running since April 2005
- Line 1 running since March 2006, first complete detector line
- Line 2 running since September 2006

#### <u> 2007 – 2008:</u>

- Line 3-5 running since Jan 2007
- Line 6-10+IL07 since Dec 2007
- Line 11-12 since May 2008

2008+: Physics with full detector !

First Physics analysis started with first line

# Livetime of lines



# Deployment



## Connection





# Pictures from seabed





## **Detector operation**

#### Fri Mar 30 19:55:02 2012 ysics Trigger 3N+2T3+K40+TS0 SNbuffer Feb2012

| ٠          | *          | •    | •    |            | •     | 1          | •          |            |         |
|------------|------------|------|------|------------|-------|------------|------------|------------|---------|
| ÷.,        | ÷.         |      |      | - <u>•</u> | ÷.    | - C.       | - C. I     |            |         |
| <u>م</u>   |            |      | ÷.   | •          | ÷.    | •          | •          | ••         |         |
| •          | - AL       | •    | ••   | •          |       | •••        | - AL       | - <b>A</b> |         |
| Α.         | - AL       | - A  | - AL | •          |       | •          | - AL       | •          |         |
| <b>A</b> - | - AL       | - A- | - AL |            | •     | - AL       |            | - AL       | - A 1   |
|            | × .        | •    | - AL | - AL       | - AL  | - AL       | - AL       | - AL       | - A - I |
|            | × .        | - A  |      | - AL       | - AL  |            | - AL       |            | - A 1   |
|            |            | - A  |      |            |       |            |            |            | A       |
|            |            | ~    |      |            |       |            | ~          |            |         |
| 2          |            |      |      |            |       |            |            |            |         |
| Χ.         |            |      | ×.   | - X.       | - 20  | - X.       | - X-       | ×.         | - X I   |
| Χ.         | ×.         | × .  | ×.   | - X.       | - X - | ×.         | - X -      | ×.         | - X I   |
| Ξ.         | - 22       | 12   | - X. |            | - X.  | - X        |            |            |         |
| Υ.         |            |      | ÷.   |            | - T.  | - T.       |            |            |         |
| •          |            |      |      |            |       |            |            |            |         |
| <u>e</u> . | ÷.         | ÷.   | ÷.   |            | ÷.    | ÷.         | · • •      | ÷.         | •       |
| ۰.         | ÷.         | - C. | ÷.   | ÷.         |       | - C.       | - C -      | •          | - C I   |
| ÷.,        |            | . •  | ÷.   |            | ÷.    | - 61       | - <b>C</b> | •          | •       |
| Α.         | •          | •    |      | - AL       | •     | - AL       | •          | - AL       | •       |
| •          | - <b>A</b> | - 64 | - AL | •          | •     | - <b>A</b> | - AL       | ~          | - A     |
| Δ.         | •          |      | - AL | - AL       | - AL  | •          | - AL       |            | - A     |
| Λ.         |            |      |      |            |       | - A        |            | ••         | - A     |
| A          |            | - A  |      | •          |       | - AL       | - AL       | ~          | - A 1   |
|            |            |      |      |            |       |            |            | ••         |         |
| Ŷ.         | 4          | 4    | 1    | 1          | 1     | 1          | *          | 4          | 1       |
| 3          | 4          | 5    | 6    | 7          | 8     | 9          | 10         | 11         | 12      |
| empty      | 125        | 1 10 | w    | 5 11       | high  |            | a ok       | 558 13     | 8       |

| nitee              |           |                |         |                       |           |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 1 |
|--------------------|-----------|----------------|---------|-----------------------|-----------|----------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Options            | Tools     |                |         |                       |           |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1   |
| 2 Line 3           | Line 4    | Line 5         | Line 6  | Line 7                | Line 8    | Line 9   | Line 18     | Line 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L   |
| The Inter It       | The later | Name of Column | Sec. 1  | Rear IN               | Sec. 10   | Rear IN  | Rear 15     | Read In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| Die Bauer 34       | Range 24  | Rear 24        | from 24 | Report 24             | Rape 24   | Supr 24  | Rear 24     | Rear 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | h   |
| 23 Rape 23         | Face 21   | Suor 23        | Roor 29 | Roar 21               | Baser 23  | Auge 20  | Roar 25     | Rear 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| R Rear 22          | Report 23 | Supr 22        | Roor 22 | Rear 22               | Baser 23  | Auger 22 | Hour 22     | Rear 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| P. Root 21         | Rept 21   | Aug 25         | Roor 25 | Rear 21               | Rept 21   | Auge 24  | Roor 24     | Rear 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| 20 Roor 30         | Fran 28   | Rune 20        | Rose 20 | Rose 20               | France 20 | Sum 20   | from 20     | Page 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| 1 Peer 11          | 1         | Supr 19        | Rear 18 | Read TR               | 1         | Sec. 19  | Rear 19     | from 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|                    |           | August 18      | Rear 18 |                       |           | 1        | Read In     | Second St.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|                    |           |                |         |                       |           |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| the Party of       | 1         | Sec. 15        | Rear 15 | Read 15               | Barry 12  | Sec. 15  | Rear 15     | Real Property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 14 800114          | Read Tol  | Burne 14       | Roos 14 | Root 14               | Read Tel  | Runs 14  | Rose 14     | Rear 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| 13 Aug 13          | Auge 12   | duar 13        | Rear 13 | Report 13             | Rape 12   | duar 13  | Rear 13     | Rear 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| C Rear C           | Rep 12    | Rear 12        | Rear 12 | Rear 12               | Rear 12   | Ruar 12  | Rear 12     | Rear 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| 1 Reports          | Basis 11  | Sec. 15        | Rear 11 | Report 11             | Read TO   | duar 11  | Rear 11     | Red 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 10 Root 10         | 100110    | Ruste 10       | Rose 10 | Rose 10               | Sec. 15   | Ruste 10 | Rose 10     | Rear 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| 1 100 1            | 1         | Rear B         | Sec. 1  | 1                     |           | from 1   | Sec. 1      | See 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|                    | free f    |                | 100.1   |                       | Acres 1   | free 6   | 1.00        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L   |
|                    | -         |                |         | -                     |           |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| A DOCT             |           | 1              | -       | -                     | Sec. 1    | from 1   |             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ÷   |
| 1 1 1 1            | from 4    | Roor 4         | Read of | -                     | Rear 4    | foor 4   | free 4      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| 3 844 3            | Rear 1    | Rape 3         | Range 2 | Auge 1                | Rear 1    | fase 1   | Auge 2      | Rear 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 2 Rear 2           | Rear 2    | Rade 2         | Rade 2  | Rear 2                | floor 2   | fuer 2   | Rape 2      | Append 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| A Real Property in | Rear 1    | Ram 1          | Rept 1  | Rear 1                | Rear 1    | Fast 1   | Auge 1      | Assor 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| 1 1 1 1            | Rep. B    | Rear B         | 100.0   | Aug 8                 | Rear B    | Report & | Read of the | Aver 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                    | -         |                |         | and the second second |           |          |             | Property of the local division of the local | -   |
|                    | 1 I mar   | mu Inc         |         |                       |           | -        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -   |

### Median rate



• Some years (2006, 2010), high rates of bioluminescence in spring, maybe correlated to particularly cold winters.



## Detector footprint

Detector as seen by atmospheric muons: position of the first triggering hit



Multi muon event



Neutrino candidate



### Point source search: selection cuts

- Good agreement between data and Monte Carlo (detector understood!)
- For PS analysis, selection based on
  - Zenith angle (upgoing events)
  - Quality of reconstruction
  - Estimated angular error in reconstructed track

Energy information (number of hits) used in the PDF







#### 0

0

0

### Point source search: detector performance



Effective area

For E<sub>v</sub><10 PeV, A<sub>eff</sub> grows with energy due to the increase of the interaction cross section and the muon range.
 For E<sub>v</sub>>10 PeV the Earth becomes opaque to neutrinos.







### Point source search: skymap



### Point source search: list of candidates

 $\circ$  We look in the direction of a list of 51 candidate sources.

- $\circ$  Selection criteria: mostly based on γ-ray flux + visibility)
- Result compatible with only-background hypothesis

Sources with lhte owest p-values

Flux upper limit on E<sup>-2</sup> spectrum (in 10<sup>-8</sup> GeV<sup>-1</sup> cm<sup>-2</sup> s<sup>-1</sup> units)

| The second se | weiten weiten ist. | INTERNAL INTERNAL  |      |                  |
|-----------------------------------------------------------------------------------------------------------------|--------------------|--------------------|------|------------------|
| Source name                                                                                                     | $lpha_s[^\circ]$   | $\delta_s[^\circ]$ | р    | $\phi_{ u}^{90}$ |
| HESS J1023-575                                                                                                  | 155.83             | -57.76             | 0.41 | 6.6              |
| 3C 279                                                                                                          | -165.95            | -5.79              | 0.48 | 10.1             |
| GX 339-4                                                                                                        | -104.30            | -48.79             | 0.72 | 5.8              |
| Cir X-1                                                                                                         | -129.83            | -57.17             | 0.79 | 5.8              |
| MGRO J1908+06                                                                                                   | -73.01             | 6.27               | 0.82 | 10.1             |
| ESO 139-G12                                                                                                     | -95.59             | -59.94             | 0.94 | 5.4              |
| HESS J1356-645                                                                                                  | -151.00            | -64.50             | 0.98 | 5.1              |
| PKS 0548-322                                                                                                    | 87.67              | -32.27             | 0.99 | 7.1              |
| HESS J1837-069                                                                                                  | -80.59             | -6.95              | 0.99 | 8.0              |
|                                                                                                                 |                    |                    |      |                  |

Most significant case: HESSJ1023-575 (p-value=41%)



 For most of the Southern-sky, ANTARES has the best limits (Moreover: IceCube threshold for SH ~1 PeV, while for Galactic sources, a cut-off in the energy spectrum is expected)
 By 2016, limits expected to improve by a factor 2.5

ch:



## PS search: additional data



Assuming 300 live days/year

## Limits vs Energy



# Diffuse flux



## Fermi Bubbles



According to Villante & Vissani [Phys. Rev. D 78 (2008) 103007]

- $\Phi_{nu} \sim 1/2.5 \Phi_{gamma} \sim E^{-2} 1.2 \times 10^{-7} \text{GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$
- Neutrino cutoff may be obtained from the proton cut off  $x_{nu} \sim x_p/20$  (50 TeV-500 TeV)

On/OFF source analysis: background estimated from average of three "bubbles" shifted in time





Nback (OFF) =  $90\pm5(stat)\pm3(sys)$ N<sub>ON</sub> = 75 events  $\rightarrow$  NO SIGNAL

Fully hadronic scenario with no cutoff excluded

# Correlations with y and X-ray flares

### Blazars: AGNs with a jet pointing to us

- 10 flaring blazars in 2008: PKS0208-512, AO0235+164, PKS1510-089, 3C273, 3C279, 3C454.3, OJ287, PKS0454-234, Wcomae, PKS2155-304
- For 9 sources: 0 events
- $\circ$  3C279: 1 event compatible with the source direction (Δα=0.56°) and time distribution
- Post trial value 10%
- Upper-limit on the neutrino fluence



#### Microquasars: Binary system of compact star + normal star accreting to the former

- 6 flaring microquasars in 2007-2010: Circinus X-1, GX339-4, H 1743-322, IGRJ17091-3624, Cygnus X-1, Cygnus X-3
- No neutrinos found in coincidence with outbursts



#### preliminary

### TaToO: Telescopes and ANTARES Target of Opportunity

**TATOO**: optical follow-up of neutrino alerts in order to search for transient sources (GRBs, choked GRBs, AGN flares...)



1.9° x 1.9°

Large sky coverage (>2π sr) + high duty cycle Improved sensitivity (1 neutrino⇒ 3 sigma discovery) No hypothesis on the nature of the source Independent of availability of external triggers

### TATOO: GRB analysis

For each neutrino alert -> search for counterpart in optical originating from GRB (54 alerts sent since mid 2009)

#### Optical image analysis

2 independent software chains based on the image subtraction:

- SNSL / LAM adapted to the TAROT/ROTSE image quality
- ROTSE SN pipeline





# GRB triggered search



10<sup>3</sup>

 $10^{4}$ 

10<sup>5</sup>

 $10^{6}$ 

 $E_{\nu}$  (GeV)

 $10^{7}$ 

 $10^{8}$ 

- Lines 1-5 data unblinded: 40 GRB alerts
- The total prompt emission duration of the 40 GRBs is 2114 s
## **Correlation with GWs**

Main motivations: - plausible common sources (microquasars, SGR, GRBs) - discovery potential for hidden sources (e.g. failed GRBs)

First analysis of 2007 data performed and reviewed by both collaborations No detection→limits.







Analysis of remaining data ongoing with improved reconstruction and dedicated GW pipeline

The MoU between Antares and VIRGO-LIGO has been extended until late 2013.

from mergers

#### Dark matter

- WIMPs (neutralinos, KK particles) accumulate in massive objects like the Sun, the Galactic Center, dwarf galaxies...
- The products of such annihilations would yield "high energy" neutrinos, which can be detected by neutrino telescopes
- A signal would be a clean indication of DM (no plausible astrophysical explanation)



#### **Oscillations:** method

0.2



#### **Oscillations:** result

Systematic uncertainties:

- Absorption length: ±10%
- Detector efficiency: ±10%
- OM angular acceptance
- Spectral index of v flux: ±0.03%

5% error on slope vs  $E_R/cos\Theta_R$ 



 $\Delta m^2 = (3.1 \pm 0.9) 10^{-3} eV^2$  (assuming maximal mixing)

# KM3NeT



# KM3NeT

- KM3NeT us the project of joint effort for the construction of a cubic kilometer neutrino detector in the Mediterranean Sea
- The first step is R&D phase, in which the experience of present projects will be an important input
- The expansion from 0.1 km<sup>2</sup> to 1 km<sup>3</sup> is not straight-forward
- Parallel contributions to marine biology, geophysics, oceanography, etc. will be important.
- 40 Particle/Astroparticle and Sea science/technology (11 European countries)
- Design Study and Preparatory Phase funded by European Framework Programs

# R&D phase

... + studies on data transmission, power distribution, time calibration and positioning, marine operations,



# KM3NeT R&D

Several photo-sensors and optical module arrangements studied.



Performance in terms of effective area and resolution for different configurations have been studied



# Multi-PMT Optical Module

 $\circ$  31 3" PMTs inside a 17" glass sphere with 31 bases (total ~140 mW)

Cooling shield and stem

- With respect to single large PMT:
  - Single vs multi photon hit separation
     Larger photocade area per OM

#### Bar

- $\circ$  300 x Self-unfolding structure
- $\circ$  6 meters long
- $\circ$  20 floors
- Made of aluminium









## KM3NeT

- Technical design report (TDR) approved
- Preproduction model (a full detector line) under construction to be deployed in 2012 (with multi-PMT OM on horizontal bars)
- 40 M€ already on the table from France, Italy and the Netherlands
- Data taking would start in 2014. By 2015 the sensitivity will surpass ANTARES



#### KM3NeT sensitivity

Sensitivity and discovery fluxes for point like sources with a E<sup>-2</sup> spectrum for 1 year of observation time (full detector 154 DUx2)



KM3NeT sensitivity 90%CL
KM3NeT discovery 5σ 50%
IceCube sensitivity 90%CL
IceCube discovery 5σ 50% 2.5÷3.5
above sensitivity flux.
(extrapolation from IceCube 40
string configuration)

I Observed Galactic TeV γ-sources (SNR, unidentified, microquasars)
 F. Aharonian et al. Rep. Prog. Phys. (2008)
 Abdo et al., MILAGRO, Astrophys. J. 658 L33-L36 (2007)
 ★ Galactic Centre

Observation of RXJ1713 at  $5\sigma$  within about 5 years

Sensitivity and discovery potential will improve with unbinned analysis

# Other techniques

### **Radio detection**

- At UHE, the predicted neutrino fluxes are very low (~1 GZK ev/year in IceCube)
- Larger (cheaper) detectors are needed  $\rightarrow$  radio detection ( $\lambda_{att}$ ~km)



#### • Askarian Effect:

- Coherent Cherenkov RF emission of from cascades
- Electrons are swept in the shower development  $\rightarrow$  negative net charge
- Signal power ~ E<sup>2</sup>
- Apart from being from the  $\lambda_{att}$  advantage, the deployment (for instance in the ice) is easier

# ANITA

South



**Cutaway View of Ice Sheet** South Atlantic Ocean **Queen Maud Land** Weddell Flight Path Indian Ocean South Pole Wes Antarctica East Marie Byrd La Antarctica Wilkes Victoria Land Pacific Ocean 107 Limits: McMurd (all flavors, 1:1:1) Ð 106 ➤ Auger-2008 105 ✤ ANITA-I-Rev.-2010 ♦ ANITA-II-2010 ster-1) 104 10<sup>3</sup> F<sub>E</sub>(E) (km<sup>-2</sup> yr<sup>-1</sup> 10<sup>2</sup> 10 0.1 GZK v Models: ш saturated 0.01 💥 🧱 mid-range 10-3 inimal 10-4 10-5 8 10 12 14  $\log_{10}$  (neutrino energy E<sub>v</sub>/GeV)

"Low" threshold (10<sup>17</sup> eV) Altitude: 35,000m 35 days + 31 days of flight Polarization sensitivity (real signal expected vertically polarized) 5 events. Expected bg 1 ev, but: 3 Horizontally polarized 1 emitted by pulser

# **ARIADNA** and **HRA**



Goal:

Instrumented volume: 500 km<sup>3</sup> 40 GZK events/year Threshold 10<sup>17</sup> eV  $\rightarrow$  Antennae in ice (att. lenght ~500 m)

4 receiver strings + 1 buried calibration transmitter/cluster

To DAQ/power hub

10-50

Downhole configuration

Prototype Development in progress Trigger processor

50-80 m

10-50 m

200 m

antenna

**ARIANNA (Antarctic Ross Iceshelf Antenna** Neutrino Array): the water-ice interface at the bottom of the Ice Shelf reflects quite well radio

DAQ housing

Vpol antenna Hpol antenna

Lower antenna pair



(First stage for Hexagonal Radio Array (seven ARIANNA stations funding approved)

| 이는 가지 다 물리고 다는 것이 같다. 거나? |     | PERMORNAL AND |
|---------------------------|-----|---------------|
| v Model                   | N,  | MRF           |
| Cosmogenic(GZK):          |     |               |
| ESS-Fig 9 [20] -p         | 40  | 0.05          |
| Y-QSO [23] -p             | 23  | 0.1           |
| Y-GRB [23] -p             | 51  | 0.044         |
| WB [24] -p                | 16  | 0.14          |
| Ahlers et al. [25] -p     | 12  | 0.19          |
| Ave et almax [26]- Fe     | 3   | 0.75          |
| Non-cosmogenic:           |     |               |
| AGN-MPR [27]              | 154 | 0.015         |
| AGN-M [28]                | 62  | 0.037         |

# Lunar Cherenkov technique



Parkes Goldstone Kalyazin



ATCA



cosmic ray

radio waves (coherent Cherenkov radiation)

"A radio method to determine the origin of the highest-energy neutrinos and cosmic rays."

neutrino



GRB?



AGN?



shower

DM?



SKA

#### Acoustic detection

- A high-energy particle cascade deposits energy in the medium  $\rightarrow$  heat  $\rightarrow$  fast expansion  $\rightarrow$  bipolar acoustic pulse (~10 µs, diameter 10 cm )
- Attenuation length: hundreds of meters
- It could be competitive with optical detection at multi-PeV energies



#### SPATS

SPATS (South Pole Acoustic Test Setup) Test for measurement of attenuation length, noise, etc. for acoustic detection in the South Pole Four strings deployed in the upper 500 m of some IceCube holes interstring disntace: 125-43m 7 transmitters/receivers per string attenuation length ~300 m (shorter than expected)



#### AMADEUS

- Integrated in ANTARES
- Test bench for acoustic detection in the Mediterranean Sea
- Six acoustic storeys:
  - Three on the Instrumentation Line
  - Three in twelfth line of ANTARES
- Ambient noise measured very stable and at the expected level





#### Auger

- Detector for UHE CRs. Hybrid technique:
  - Surface detectors <sup>3</sup>
  - Fluorence detectors
- Also works for neutrinos (E > ~ 0.1 EeV)
  - Three possibilities:
    - Down-going
    - Earth-skimming
    - Andes-crossing (tau neutrinos)



Figure 3: Differential and integrated upper limits (90% C.L.) from the Pierre Auger Observatory for a diffuse flux of down-going  $\nu$  (2 yr of full Auger) and Earth-skimming  $\nu_{\tau}$  (3.5 yr of full Auger). Limits from other experiments are also plotted [16]. Expected fluxes are shown for cosmogenic neutrinos [17] and for a theoretical exotic model [18].



# JEM-EUSO

- Space detection (International Space Station)
- Based on fluorescence detection (airshowers initiated by UHE CRs, gammas and neutrinos)
- Huge volume



UV photon

Extensive Air Shower (EAS)

## Many, many ideas...



#### Summary

Neutrino astronomy is becoming a powerful tool for Astrophysics and Particle Physics

AMANDA and Baikal pioneered the field

IceCube, the first cubic kilometer detector, is complete a providing rich data. First severe constrains on astrophysical models have been set. Maybe the first cosmic neutrinos have been already observed

ANTARES, in the Northern hemisphere, has proven the feasibility of large underwater detectors. It completes the full sky coverage and has its own specific advantages. The technical success of ANTARES paves the way for the cubic kilometer detector in the Mediterranean Sea: KM3NeT